Skip to main content
Log in

The soybean F3′H protein is localized to the tonoplast in the seed coat hilum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We previously isolated a soybean (Glycine max (L.) Merr.) flavonoid 3′-hydroxylase (F3′H) gene (sf3′h1) corresponding to the T locus, which controls pubescence and seed coat color, from two near-isogenic lines (NILs), To7B (TT) and To7G (tt). The T allele is also associated with chilling tolerance. Here, Western-blot analysis shows that the sf3′h1 protein was predominantly detected in the hilum and funiculus of the immature seed coat in To7B, whereas sf3′h1 was not detected in To7G. A truncated sf3′h1 protein isolated from To7G was detected only upon enrichment by immunoprecipitation. An analysis using diphenylboric acid 2-aminoethyl ester (DBPA) staining revealed that flavonoids accumulated in the hilum and the funiculus in both To7B and To7G. Further, the scavenging activity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in methanol extracts from the funiculus and hilum of To7B was higher than that of To7G. Moreover, the enzymatic activity of F3′H was detected using microsomal fractions from yeast transformed with sf3′h1 from To7B, but not from To7G. These results indicate that sf3′h1 is involved in flavonoid biosynthesis in the seed coat and affects the antioxidant properties of those tissues. As shown by immunofluorescence microscopy, the sf3′h1 protein was detected primarily around the vacuole in the parenchymatic cells of the hilum in To7B. Further immunoelectron microscopy detected sf3′h1 protein on the membranous structure of the vacuole. Based on these observations, we conclude that F3′H, which is a cytochrome P450 monooxygenase and has been found to be localized to the ER in other plant systems, is localized in the tonoplast in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome P450

DAPI:

4′-6-Diamidino-2-phenylindole

DPBA:

Diphenylboric acid 2-aminoethyl ester

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

F3′H:

Flavonoid 3′-hydroxylase

HPLC:

High-performance liquid chromatography

NILs:

Near-isogenic lines

ROS:

Reactive oxygen species

References

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    Article  PubMed  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavonone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828

    Article  PubMed  CAS  Google Scholar 

  • Alemanno L, Ramos T, Gargadenec A, Andary C, Ferriere N (2003) Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. Ann Bot 92:613–623

    Article  PubMed  CAS  Google Scholar 

  • Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113:475–488

    Article  Google Scholar 

  • Blots MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200

    Google Scholar 

  • Brugliera F, Barri-Rewell G, Holton TA, Mason J (1999) Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19:441–451

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Buttery BR, Buzzell RI (1973) Varietal differences in leaf flavonoids of soybeans. Crop Sci 13:103–106

    CAS  Google Scholar 

  • Buzzell RI, Buttery BR, MacTavish DC (1987) Biochemical genetics of black pigmentation of soybean seed. J Hered 78:53–54

    Google Scholar 

  • Dhaubhadel S, McGarvey BD, Williams R, Gijzen M (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol 53:733–743

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:1173–1179

    PubMed  CAS  Google Scholar 

  • Donaldson RP, Luster DG (1991) Multiple forms of plant cytochromes P-450. Plant Physiol 96:669–674

    Article  PubMed  CAS  Google Scholar 

  • Forkmann G, Heller W, Grisebach H (1980) Anthocyanin biosynthesis in flowers of Matthiola incana flavanone 3- and flavonoid 3′-hydroxylases. Z Naturforsch C Biosci 35:691–695

    Google Scholar 

  • Halbwirth H (2010) The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci 11:591–621

    Article  Google Scholar 

  • Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966

    Article  CAS  Google Scholar 

  • Heller W, Forkmann G (1994) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids. Chapman and Hall, London, pp 495–535

    Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  • Höfte H, Chrispeels MJ (1992) Protein sorting to the vacuolar membrane. Plant Cell 4:995–1004

    PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    PubMed  CAS  Google Scholar 

  • Hrazdina G (1992) Compartmentation in aromatic metabolism. In: Stafford HA, Ibrahim RK (eds) Phenolic metabolism in plants. Plenum Press, New York, pp 1–23

    Chapter  Google Scholar 

  • Hsieh K, Huang AHC (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum–derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Motozaki A, Takeuchi Y, Mikio N, Hara-Nishimura I (1995) Molecular characterization of proteins in protein-body membrane that disappear most rapidly during transformation of protein bodies into vacuoles. Plant J 7:235–243

    Article  PubMed  CAS  Google Scholar 

  • Iwashina T, Benitez ER, Takahashi R (2006) Analysis of flavonoids in pubescence of soybean near-isogenic lines for pubescence color loci. J Hered 97:438–443

    Article  PubMed  CAS  Google Scholar 

  • Jiayang L, Tsai-Mei OL, Richard R, Robert GA, Robert LL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    Google Scholar 

  • Kaltenbach M, Schröder G, Schmelzer E, Lutz V, Schröder J (1999) Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J 19:183–193

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa H, Kuroiwa T (1992) Giant mitochondria in the mature egg cell of Pelargonium zonale. Protoplasma 168:184–188

    Article  Google Scholar 

  • Kuroiwa T, Nishibayashi S, Kawano S, Suzuki T (1981) Visualization of DNA in various phages (T4, χ, T7, ϕ29) by ethidium bromide epi-fluorescent microscopy. Experientia 37:969–971

    Article  PubMed  CAS  Google Scholar 

  • Kytridis VP, Manetas Y (2006) Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence linking the putative antioxidant role to the proximity of oxy-radical source. J Exp Bot 57:2203–2210

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Larson RL, Bussard JB (1986) Microsomal flavonoid 3′-monooxygenase from maize seedlings. Plant Physiol 80:483–486

    Article  PubMed  CAS  Google Scholar 

  • Madyastha KM, Ridgway JE, Dwyer JG, Coscia CJ (1977) Subcellular localization of a cytochrome P-450-dependent monooxygenase in vesicles of the higher plant Catharanthus roseus. J Cell Biol 72:302–331

    Article  PubMed  CAS  Google Scholar 

  • Menting JGT, Scopes RK, Stevenson TW (1994) Characterization of flavonoid 3′,5′-hydroxylase in microsomal membrane fraction of Petunia hybrida flowers. Plant Physiol 106:633–642

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu A, Masuta C, Senda M, Matsuura H, Kasai A, Hong JS, Kitamura K, Abe J, Kanazawa A (2007) Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol J 5:778–790

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu A, Masuta C, Matsuura H, Kitamura K, Abe J, Kanazawa A (2009) Down-regulation of flavonoid 3′-hydroxylase gene expression by virus-induced silencing in soybean reveals the presence of a threshold mRNA level associated with pigmentation in pubescence. J Plant Physiol 166:32–39

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Hehn A, Jugdé H, Slimestad R, Larbat R, Bourgaud F, Lillo C (2010) Identification and characterization of CYP75A31, a new flavonoid 3′,5′-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biol 10:21–32

    PubMed  Google Scholar 

  • Ono E, Hatayama M, Isono Y, Sato T, Watanabe R, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Tanaka Y, Kusumi T, Nishino T, Nakayama T (2006) Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J 45:133–143

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–554

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88:396–400

    Article  PubMed  CAS  Google Scholar 

  • Poulos TL, Finzel BC, Gunsales IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130

    PubMed  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  PubMed  CAS  Google Scholar 

  • Pratt DE (1976) Role of flavones and related compounds in retarding lipid-oxidative flavor changes in foods. In: Charalambous G, Katz I (eds) Phenolic, sulfur, and nitrogen compounds in food flavors. ACS symposium series 26. American Chemical Society, Washington, DC, pp 1–13

  • Raikhel N, Chrispeels MJ (2000) Protein sorting and vesicle traffic. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 160–201

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  PubMed  CAS  Google Scholar 

  • Salaita L, Kar RK, Majee M, Downie AB (2005) Identification and characterization of mutants capable of rapid germination at 10°C from activation-tagged lines of Arabidopsis thaliana. J Exp Bot 56:2059–2069

    Article  PubMed  CAS  Google Scholar 

  • Saslowsky D, Winkel-Shirley B (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27:37–48

    Article  PubMed  CAS  Google Scholar 

  • Schoenbohm C, Martens S, Elder C, Forkmann G, Weisshaar B (2000) Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 381:749–753

    Article  PubMed  CAS  Google Scholar 

  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852

    Article  CAS  Google Scholar 

  • Takahashi R (1997) Association of soybean genes I and T with low-temperature induced seed coat deterioration. Crop Sci 37:1755–1759

    Article  Google Scholar 

  • Takahashi R, Asanuma S (1996) Association of T gene with chilling tolerance in soybean. Crop Sci 36:559–562

    Article  Google Scholar 

  • Takahashi R, Benitez ER, Funatsuki H, Ohnishi S (2005) Soybean maturity and pubescence color genes improve chilling tolerance. Crop Sci 45:1387–1393

    Article  CAS  Google Scholar 

  • Takahashi R, Dubouzet JG, Matsumura H, Yasuda K, Iwashina T (2010) A new allele of flower color gene W1 encoding flavonoid 3′,5′-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja. BMC Plant Biol 10:155–164

    Article  PubMed  Google Scholar 

  • Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R (2002) A single-base deletion in soybean flavonoid 3′-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol 50:187–196

    Article  PubMed  CAS  Google Scholar 

  • Toda K, Takahashi R, Iwashina T, Hajika M (2011) Difference in chilling–induced flavonoid profiles, antioxidant activity and chilling tolerance between soybean near-isogenic lines for the pubescence color gene. J Plant Res 124:173–182

    Article  PubMed  CAS  Google Scholar 

  • Todd JJ, Vodkin LO (1993) Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol 102:663–670

    PubMed  CAS  Google Scholar 

  • Watson CJW, Froehlich JE, Josefsson CA, Chapple C, Durst F, Benveniste I, Coolbaugh RC (2001) Localization of CYP86B1 in the outer envelope of chloroplasts. Plant Cell Physiol 42:873–878

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Wuyts N, Lognay G, Swennen R, De Waele D (2006) Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism. J Exp Bot 57:2825–2835

    Article  PubMed  CAS  Google Scholar 

  • Zabala G, Vodkin LO (2003) Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3′ hydroxylase. Genetics 16:295–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko Toda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toda, K., Kuroiwa, H., Senthil, K. et al. The soybean F3′H protein is localized to the tonoplast in the seed coat hilum. Planta 236, 79–89 (2012). https://doi.org/10.1007/s00425-012-1590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1590-5

Keywords

Navigation