Skip to main content
Log in

Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Auxin regulates diverse molecular and physiological events at the cellular and organismal levels during plant growth and development in response to environmental stimuli. It acts either through distinct signaling pathways or in concert with other growth hormones. Its biological functions are adjusted by modulating biosynthesis, conjugate formation, and polar transport and distribution. Several tryptophan-dependent and -independent auxin biosynthetic pathways have been proposed. Recent studies have shown that a few flavin monooxygenase enzymes contribute to the tryptophan-dependent auxin biosynthesis. Here, we show that activation of a flavin monooxygenase gene YUCCA7 (YUC7), which belongs to the tryptophan-dependent auxin biosynthetic pathway, enhances drought resistance. An Arabidopsis activation-tagged mutant yuc7-1D exhibited phenotypic changes similar to those observed in auxin-overproducing mutants, such as tall, slender stems and curled, narrow leaves. Accordingly, endogenous levels of total auxin were elevated in the mutant. The YUC7 gene was induced by drought, primarily in the roots, in an abscisic acid (ABA)-dependent manner. The yuc7-1D mutant was resistant to drought, and drought-responsive genes, such as RESPONSIVE TO DESSICATION 29A (RD29A) and COLD-REGULATED 15A (COR15A), were up-regulated in the mutant. Interestingly, whereas stomatal aperture and production of osmoprotectants were not discernibly altered, lateral root growth was significantly promoted in the yuc7-1D mutant when grown under drought conditions. These observations support that elevation of auxin levels in the roots enhances drought resistance possibly by promoting root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CaMV:

Cauliflower Mosaic Virus

COR:

Cold-regulated

2,4-D:

2,4-Dichlorophenoxyacetic acid

FZY:

FLOOZY

5-MT:

5-Methyl tryptophan

IAA:

Indole-3-acetic acid

qRT-PCR:

Quantitative real-time RT-PCR

RD29A:

RESPONSIVE TO DESSICATION 29A

SEM:

Scanning electron microscopy

TAIL-PCR:

Thermal asymmetric interlaced PCR

WESO1:

WES1

YUC:

YUCCA

References

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  PubMed  CAS  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97:14819–14824

    Article  PubMed  CAS  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48:51–66

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inzé D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  PubMed  CAS  Google Scholar 

  • Burdon JJ, Thrall PH (2003) The fitness costs to plants of resistance to pathogens. Genome Biol 4:227

    Article  PubMed  Google Scholar 

  • Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK, Gong Z (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43:273–283

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci USA 107:12046–12051

    Article  PubMed  CAS  Google Scholar 

  • Eklund DM, Ståldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sundström JF, Thelander M, Ezcurra I, Sundberg E (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–363

    Article  PubMed  CAS  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  PubMed  CAS  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2011) Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: the ToFZY gene family. Plant Physiol Biochem 49:782–791

    Article  PubMed  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  PubMed  CAS  Google Scholar 

  • Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P (2008) sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci USA 105:15196–15201

    Article  PubMed  CAS  Google Scholar 

  • Ghanashyam C, Jain M (2009) Role of auxin-responsive genes in biotic stress responses. Plant Signal Behav 4:846–848

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O (2008)  The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  PubMed  CAS  Google Scholar 

  • Holland JJ, Roberts D, Liscum E (2009) Understanding phototropism: from Darwin to today. J Exp Bot 60:1969–1978

    Article  PubMed  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza LC (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    Article  PubMed  CAS  Google Scholar 

  • Junghans U, Polle A, Düchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531

    Article  PubMed  CAS  Google Scholar 

  • Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS, Bohnert HJ, Hasegawa PM, Yun DJ, Bressan RA (2007) yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol 145:722–735

    Article  PubMed  CAS  Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929

    Article  PubMed  CAS  Google Scholar 

  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    Article  PubMed  CAS  Google Scholar 

  • LeCLere S, Schmelz EA, Chourey PS (2010) Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 153:306–318

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Golani Y, Kaye Y, Levine A (2010) Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. J Exp Bot 61:2615–2622

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2005) The fall and rise of apical dominance. Curr Opin Genet Dev 15:468–471

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Markewitz D, Devine S, Davidson EA, Brando P, Nepstad DC (2010) Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytol 187:592–607

    Article  PubMed  Google Scholar 

  • Maurel C, Simonneau T, Sutka M (2010) The significance of roots as hydraulic rheostats. J Exp Bot 61:3191–3198

    Article  PubMed  CAS  Google Scholar 

  • Möller B, Weijers D (2009) Auxin control of embryo patterning. Cold Spring Harb Perspect Biol 1:a001545

    Article  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Park CM (2007) Auxin homeostasis in plant stress adaptation response. Plant Signal Behav 2:306–307

    Article  PubMed  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  PubMed  CAS  Google Scholar 

  • Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Popko J, Hänsch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol (Stuttg) 12:242–258

    Article  CAS  Google Scholar 

  • Quittenden LJ, Davies NW, Smith JA, Molesworth PP, Tivendale ND, Ross JJ (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol 151:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  PubMed  CAS  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

    Article  PubMed  CAS  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  PubMed  CAS  Google Scholar 

  • Tivendale ND, Davies NW, Molesworth PP, Davidson SE, Smith JA, Lowe EK, Reid JB, Ross JJ (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154:1957–1965

    Article  PubMed  CAS  Google Scholar 

  • Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JN, Souer E, Koes R (2002) FLOOZY of petunia is a flavin monooxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev 16:753–763

    Article  PubMed  Google Scholar 

  • Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Ahn JH, Blázquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrándiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  Google Scholar 

  • Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey MA, von Caemmerer S, Pogson BJ (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58:299–317

    Article  PubMed  CAS  Google Scholar 

  • Woo YM, Park HJ, Su’udi M, Yang JI, Park JJ, Back K, Park YM, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136

    Article  PubMed  CAS  Google Scholar 

  • Woodward C, Bemis SM, Hill EJ, Sawa S, Koshiba T, Torii KU (2005) Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol 139:192–203

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of Delta(1)-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Commun 3:766–772

    Article  Google Scholar 

  • Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151:1889–1901

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Chua NH (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Leaping Research Program (20110016440) provided by the National Research Foundation of Korea, the Next-Generation BioGreen 21 program (Plant Molecular Breeding Center No. PJ008103) provided by the Rural Development Administration, and by grants from the Plant Signaling Network Research Center (20110001099), the National Research Foundation of Korea (20110027355), and the Agricultural R & D Promotion Center (309017-03), Korea Ministry for Food, Agriculture, Forestry and Fisheries.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Mo Park.

Additional information

M. Lee and J. H. Jung contributed equally to the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 2287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Jung, JH., Han, DY. et al. Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis . Planta 235, 923–938 (2012). https://doi.org/10.1007/s00425-011-1552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1552-3

Keywords

Navigation