Skip to main content

Advertisement

Log in

Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

[FeFe]-hydrogenases (HYDA) link the production of molecular H2 to anaerobic metabolism in many green algae. Similar to Chlamydomonas reinhardtii, Chlorella variabilis NC64A (Trebouxiophyceae, Chlorophyta) exhibits [FeFe]-hydrogenase (HYDA) activity during anoxia. In contrast to C. reinhardtii and other chlorophycean algae, which contain hydrogenases with only the HYDA active site (H-cluster), C. variabilis NC64A is the only known green alga containing HYDA genes encoding accessory FeS cluster-binding domains (F-cluster). cDNA sequencing confirmed the presence of F-cluster HYDA1 mRNA transcripts, and identified deviations from the in silico splicing models. We show that HYDA activity in C. variabilis NC64A is coupled to anoxic photosynthetic electron transport (PSII linked, as well as PSII-independent) and dark fermentation. We also show that the in vivo H2-photoproduction activity observed is as O2 sensitive as in C. reinhardtii. The two C. variabilis NC64A HYDA sequences are similar to homologs found in more deeply branching bacteria (Thermotogales), diatoms, and heterotrophic flagellates, suggesting that an F-cluster HYDA is the ancestral enzyme in algae. Phylogenetic analysis indicates that the algal HYDA H-cluster domains are monophyletic, suggesting that they share a common origin, and evolved from a single ancestral F-cluster HYDA. Furthermore, phylogenetic reconstruction indicates that the multiple algal HYDA paralogs are the result of gene duplication events that occurred independently within each algal lineage. Collectively, comparative genomic, physiological, and phylogenetic analyses of the C. variabilis NC64A hydrogenase has provided new insights into the molecular evolution and diversity of algal [FeFe]-hydrogenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LED:

Light emitting diode

MBBM:

Modified Bold’s Basal Medium

MOPS:

3-Morpholinopropanesulfonic acid

MTAP:

Modified tris-acetate-phosphate

MV:

Methyl viologen

PAR:

Photosynthetically active radiation

PSII/PSI:

Photosystem II/Photosystem I

TAP:

Tris-acetate-phosphate

HYDA:

[FeFe]-hydrogenase

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Ananyev A, Carrieri D, Dismukes GD (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74(19):6102–6113

    Article  PubMed  CAS  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552

    Article  PubMed  Google Scholar 

  • Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955

    Article  PubMed  CAS  Google Scholar 

  • Boyd ES, Spear JR, Peters JW (2009) [FeFe]-hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community. Appl Environ Microbiol 75:4620–4623

    Article  PubMed  CAS  Google Scholar 

  • Brand JJ, Wright JN, Lien S (1989) Hydrogen production by eukaryotic algae. Biotechnol Bioeng 33:1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Brown JA, Nielson PJ (1974) Transfer of photosynthetically produced carbohydrate from endosymbiotic Chlorella variabilis to Paramecium bursaria. J Eukaryot Microbiol 21:569–570

    Article  CAS  Google Scholar 

  • Cohen J, Kim K, Posewitz M, Ghirardi ML, Schulten K, Seibert M, King P (2005) Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase. Biochem Soc Trans 33:80–82

    Article  PubMed  CAS  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1, available from http://www.geneious.com

  • Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 284:7201–7213

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ, Maberly SC, Esteban GF (1996) Spectacular abundance of ciliates in anoxic pond water: contribution of symbiont photosynthesis to host respiratory oxygen requirements. FEMS Microbiol Ecol 20:229–235

    Article  CAS  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132

    Article  PubMed  CAS  Google Scholar 

  • Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758

    Article  PubMed  CAS  Google Scholar 

  • Ghirardi ML, Togasaki R, Seibert M (1997) Oxygen sensitivity of algal H2-production. Appl Biochem Biotechnol 63–65:141–151

    Article  PubMed  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness P-C, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Bio 58:71–91

    Article  CAS  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61

    Article  PubMed  CAS  Google Scholar 

  • Godman JE, Molnár A, Baulcombe DC, Balk J (2010) RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. Biochem J 431:345–351

    PubMed  CAS  Google Scholar 

  • Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190–198

    Article  PubMed  CAS  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102:523–540

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Kamp C, Silakov A, Winkler M, Reijerse EJ, Lubitz W, Happe T (2008) Isolation and first EPR characterization of the [FeFe]-hydrogenase from green algae. Biochim Biophys Acta Bioenerg 1777(5):410–416

    Article  CAS  Google Scholar 

  • Karakashian SJ, Karakashian MW, Rudzinska MA (1968) Electron microscopic observations on the symbiosis of Paramecium bursaria and its intracellular algae. J Eukaryot Microbiol 15:113–128

    Article  Google Scholar 

  • Kato Y, Imamura N (2009) Metabolic control between the symbiotic Chlorella variabilis and the host Paramecium. In: Endosymbionts in Paramecium. Springer-Verlag Berlin Heidelberg: 57–82

  • King PW, Svedruzic D, Cohen J, Schulten K, Seibert M, Ghirardi ML (2006) Structural and functional investigations of biological catalysts for optimization of solar-driven, H2-production systems. Proceedings of SPIE 6340, 63400Y-1

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155

    Article  PubMed  CAS  Google Scholar 

  • Kosourov S, Ghirardi ML, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrogen Energ 36:2044–2048

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader K-P, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  PubMed  Google Scholar 

  • Loefer JB (1936) Isolation and growth characteristics of the “Zoochlorella” of Paramecium bursaria. Am Nat 70:184

    Article  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Seibert M, Ghirardi ML (2007) Hydrogen fuel production by transgenic microalgae. Transgenic microalgae as green cell factories. Springer, New York

    Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed  CAS  Google Scholar 

  • Meuser JE, Ananyev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, Dismukes GC, Posewitz MC (2009) Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J Biotechnol 142:21–30

    Article  PubMed  CAS  Google Scholar 

  • Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64:1063–1084

    Article  PubMed  CAS  Google Scholar 

  • Morris DL (1948) Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107:254–255

    Article  PubMed  CAS  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii. J Biol Chem 282:25475–25486

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, Mulder DW, Peters JW (2008) New frontiers in hydrogenase structure and biosynthesis. Curr Chem Biol 2:178–199

    Article  CAS  Google Scholar 

  • Posewitz MC, Dubini A, Meuser JE, Seibert M, Ghirardi ML (2009) Hydrogenases, hydrogen production and anoxia in Chlamydomonas reinhardtii. In: Stern D, Harris EH (eds) The Chlamydomonas sourcebook, vol 2. Oxford, New York, pp 217–255

    Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):485–501

    Article  Google Scholar 

  • Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13(1):89–95

    Article  PubMed  CAS  Google Scholar 

  • Rey FE, Oda Y, Harwood CS (2006) Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palutris. J Bacteriol 188(17):6143–6152

    Article  PubMed  CAS  Google Scholar 

  • Rühle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8:107

    Article  PubMed  Google Scholar 

  • Skjånes K, Gnutsen G, Källqvist T, Lindblad P (2008) H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design. Int J Hydrogen Energ 33:511–521

    Article  Google Scholar 

  • Skjånes K, Pinto FL, Lindblad P (2010) Evidence for transcription of three genes with characteristics of hydrogenases in the green alga Chlamydomonas noctigama. Int J Hydrogen Energ 35:1074–1088

    Article  Google Scholar 

  • Timmins M, Thomas-Hall SR, Darling A, Zhang E, Hankamer B, Marx UC, Schenk PM (2009) Phylogenetic and molecular analysis of hydrogen-producing green algae. J Exp Bot 60:1691–1702

    Article  PubMed  CAS  Google Scholar 

  • Trevelyan WE, Harrison JS (1952) Studies on yeast metabolism. 1. Fractionation and microdetermination of cell carbohydrates. Biochem J 50(3):298–303

    PubMed  CAS  Google Scholar 

  • Van Etten JL, Lane LC, Meints RH (1991) Viruses and virus-like particles of eukaryotic algae. Microbiol Rev 55:586–620

    PubMed  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  PubMed  CAS  Google Scholar 

  • Winkler M, Heil B, Happe T (2002) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. BBA-Gene Struct Expr 1576:330–334

    CAS  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliot LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9(8):1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Yanai-Balser GM, Duncan GA, Eudy JD, Wang D, Li W, Argarkova IV, Dunigan DD, Van Etten JL (2010) Microarray analysis of Paramecium bursaria Chlorella virus 1 transcription. J Virol 84(1):532–542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this work gratefully acknowledge the United States Air Force Office of Scientific Research under grant FA9550-05-1-0365 (to JEM, ESB, GA, DK, GCD, JWP, MCP), a National Aeronautics and Space Administration Graduate Research Program (GSRP) grant #NNG05GL52H (JEM, MCP), the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Contract No. DE-FG02-96ER20225) for funding the development of extracellular metabolite quantitation (NMUM, MLG), the National Aeronautics and Space Administration Astrobiology Institute under grant NNA08C-N85A [Astrobiology Biogeocatalysis Research Center (ESB, JWP)], and a National Aeronautics and Space Administration Astrobiology Institute postdoctoral fellowship (ESB). The work conducted by the United States Department of Energy Joint Genome Institute is supported by the Office of Science of the United States Department of Energy under Contract No. DE-AC02-05CH11231. Thanks are extended to Dr. James Gurnon and Dr. James L. Van Etten (University of Nebraska) for providing C. variabilis NC64A and access to transcriptome data. We also acknowledge exceptional technical assistance from Edward Dempsey (Chemistry Dept. Colorado School of Mines).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Posewitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1946 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meuser, J.E., Boyd, E.S., Ananyev, G. et al. Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A. Planta 234, 829–843 (2011). https://doi.org/10.1007/s00425-011-1431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1431-y

Keywords

Navigation