Skip to main content

Advertisement

Log in

Involvement of auxin distribution in root nodule development of Lotus japonicus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The symbiosis between legume plants and rhizobia causes the development of new organs, nodules which function as an apparatus for nitrogen fixation. In this study, the roles of auxin in nodule development in Lotus japonicus have been demonstrated using molecular genetic tools and auxin inhibitors. The expression of an auxin-reporter GH3 fused to β-glucuronidase (GUS) was analyzed in L. japonicus roots, and showed a strong signal in the central cylinder of the root, whereas upon rhizobium infection, generation of GUS signal was observed at the dividing outer cortical cells during the first nodule cell divisions. When nodules were developed to maturity, strong GUS staining was detected in vascular tissues of nodules, suggesting distinct auxin involvement in the determinate nodule development. Numbers and the development of nodules were affected by auxin transport inhibitors (1-naphthylphthalamic acid, NPA and triindobenzoic acid, TIBA), and by a newly synthesized auxin antagonist, α-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA). The common phenotypical alteration by these auxin inhibitors was the inhibition in forming lenticel which is normally developed on the nodule surface from the root outer cortex. The inhibition of lenticel formation was correlated with the inhibition of nodule vascular bundle development. These results indicate that auxin is required for the normal development of determinate nodules in a multidirectional manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DsRed:

Discoma sp. red fluorescent protein

Dpi:

Days post inoculation

GUS:

β-Glucuronidase

NPA:

1-Naphthylphthalamic acid

PEO-IAA:

α-(Phenyl ethyl-2-one)-indole-3-acetic acid

TIBA:

Triindobenzoic acid

References

  • Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW, Mancuso S, Martinoia E, Geisler M (2008) Modulation of p-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283:21817–21826

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Barlow PW, Baskin TI, Chen RJ, Feldman L, Forde BG, Geisler M, Jernstedt J, Menzel D, Muday GK, Murphy A, Samaj J, Volkmann D (2005) What is apical and what is basal in plant root development? Trends Plant Sci 10:409–411

    Article  PubMed  CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    PubMed  CAS  Google Scholar 

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodelling in the rhizobium–legume symbiosis. Crit Rev Plant Sci 23:293–316

    Article  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Denarie J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  CAS  Google Scholar 

  • Ding YL, Kalo P, Yendrek C, Sun JH, Liang Y, Marsh JF, Harris JM, Oldroyd GED (2008) Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695

    Article  PubMed  CAS  Google Scholar 

  • Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol 138:2396–2405

    Article  PubMed  CAS  Google Scholar 

  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  CAS  Google Scholar 

  • Grønlund M, Gustafsen C, Roussis A, Jensen D, Nielsen LP, Marcker KA, Jensen EO (2003) The Lotus japonicus ndx gene family is involved in nodule function and maintenance. Plant Mol Biol 52:303–316

    Article  PubMed  Google Scholar 

  • Hagen G, Martin G, Li Y, Guilfoyle TJ (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17:567–579

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H (2008) Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci USA 105:5632–5637

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Article  Google Scholar 

  • Huo XY, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein: GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25:156–165

    Article  PubMed  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    Article  PubMed  CAS  Google Scholar 

  • Karas B, Murray J, Gorzelak M, Smith A, Sato S, Tabata S, Szczyglowski K (2005) Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti involves the nodulation factor-dependent induction of root hairs. Plant Physiol 137:1331–1344

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38:203–214

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, Hayashi M (2009) Gibberellin controls the nodulation signaling pathway in Lotus japonicus. Plant J 58:183–194

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    Article  CAS  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  PubMed  CAS  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Kawaguchi M (2006) Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol 47:176–180

    Article  PubMed  CAS  Google Scholar 

  • Pacios-Bras C, Schlaman HRM, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol 52:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Pankhurst CE, Sprent JI (1975) Surface features of soybean root nodules. Protoplasma 85:85–98

    Article  Google Scholar 

  • Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB, Kiss GB, Cook DR (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1975) Transport of indoleacetic-acid in plant-cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74:163–172

    Article  CAS  Google Scholar 

  • Rubery PH, Ar S (1974) Carrier-mediated auxin transport. Planta 118:101–121

    Article  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nature Rev Mol Cell Biol 7:847–859

    Article  CAS  Google Scholar 

  • Thimann KV (1936) On the physiology of the formation of nodules on legume roots. Proc Natl Acad Sci USA 22:511–514

    Article  PubMed  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  PubMed  CAS  Google Scholar 

  • van Spronsen PC, Grønlund M, Bras CP, Spaink HP, Kijne JW (2001) Cell biological changes of outer cortical root cells in early determinate nodulation. Mol Plant Microbe Interact 14:839–847

    Article  PubMed  Google Scholar 

  • Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

    Article  PubMed  CAS  Google Scholar 

  • Walsh KB (1995) Physiology of the legume nodule and its response to stress. Soil Biol Biochem 27:637–655

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank National Bioresource Project (Lotus japonicus, Glycine max) for seeds of L. japonicus and Dr. Ken-ichiro Hayashi (Okayama University of Science, Japan) for the PEO-IAA. We also wish to thank Dr. Niels Sandal and Dr. Jens Stougaard (University of Aarhus, Denmark) and Dr. Herman P. Spaink (Leiden State University, Netherlands) for seeds of GH3:GUS transformed L. japonicus (Lj3632.5.127). We thank Dr. Takashi Aoyama (Kyoto University, Japan) for the technical assistance in scanning electron microscope and the sample preparation and Dr. Makoto Hayashi (National Institute of Agrobiological Sciences, Japan) for the M. loti carrying DsRed. This work was supported in part by Grant-in-Aid for Scientific Research (No. 21027022 to K. Y.) and by Research Fellowship from the Japan Society for the Promotion of Science for Young Scientists (No. 09J00170 to K. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazufumi Yazaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takanashi, K., Sugiyama, A. & Yazaki, K. Involvement of auxin distribution in root nodule development of Lotus japonicus . Planta 234, 73–81 (2011). https://doi.org/10.1007/s00425-011-1385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1385-0

Keywords

Navigation