Skip to main content
Log in

Occurrence of xylan and mannan polysaccharides and their spatial relationship with other cell wall components in differentiating compression wood tracheids of Cryptomeria japonica

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Compression wood (CW) tracheids have different cell wall components than normal wood (NW) tracheids. However, temporal and spatial information on cell wall components in CW tracheids is poorly understood. We investigated the distribution of arabino-4-O-methylglucuronoxylans (AGXs) and O-acetyl-galactoglucomannans (GGMs) in differentiating CW tracheids. AGX labeling began to be detected in the corner of the S1 layer at the early S1 formation stage. Subsequently, the cell corner middle lamella (ccML) showed strong AGX labeling when intercellular spaces were not fully formed. AGX labeling was uniformly distributed in the S1 layer, but showed uneven distribution in the S2 layer. AGX labeling was mainly detected in the inner S2 layer after the beginning of the helical cavity formation. The outer S2 layer showed almost no labeling of low substituted AGXs. Only a very small amount of high substituted AGXs was distributed in the outer S2 layer. These patterns of AGX labeling in the S2 layer opposed the lignin and β-1-4-galactan distribution in CW tracheids. GGM labeling patterns were almost identical to AGX labeling in the early stages of CW tracheids, and GGM labeling was detected in the entire S2 layer from the early S2 formation stage of CW tracheids with some spatial differences in labeling density depending on developmental stage. Compared with NW tracheids, CW tracheids showed significantly different AGX distributions in the secondary cell wall but similar GGM labeling patterns. No significant differences were observed in labeling after delignification of CW tracheids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AGXs:

Arabino-4-O-methylglucuronoxylans

ccML:

Cell corner middle lamella

CW:

Compression wood

GGM:

O-Acetyl-galactoglucomannans

IL:

Intercellular layer

NW:

Normal wood

PW:

Primary cell wall

References

  • Altaner C, Hapca AI, Knox JP, Jarvis MC (2007) Detection of β-1–4-galactan in compression wood of Sitka spruce [Picea sitchensis (Bong.) Carrière] by immunofluorescence. Holzforschung 61:311–316

    Article  CAS  Google Scholar 

  • Altaner CM, Tokareva EN, Jarvis MC, Harris PJ (2010) Distribution of (1 → 4)-β-galactans, arabinogalactan proteins, xylans and (1 → 3)-β-glucans in tracheid cell walls of softwoods. Tree Physiol 30:782–793

    Article  PubMed  CAS  Google Scholar 

  • Awano T, Takabe K, Fujita M (1998) Localization of glucuronoxylans in Japanese beech visualized by immunogold labeling. Protoplasma 202:213–222

    Article  CAS  Google Scholar 

  • Côté WA Jr, Pickard PA, Timell TE (1967) Studies on compression wood. IV. Fractional extraction and preliminary characterization of polysaccharides in normal and compression wood of Balsam fir. Tappi 50:350–356

    Google Scholar 

  • Côté WA Jr, Kutscha NP, Simson BW, Timell TE (1968) Studies on compression wood. VI. Distribution of polysaccharides in the cell wall of tracheids from compression wood of Balsam fir [Abies balsamea (L.) Mill]. Tappi 51:33–40

    Google Scholar 

  • Donaldson LA (1992) Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bull 13:381–387

    Google Scholar 

  • Hoffmann GC, Timell TE (1972a) Polysaccharides in compression wood of tamarack (Larix laricina). 2. Constitution of a galactoglucomannan. Svensk Paperstidn 75:297–298

    CAS  Google Scholar 

  • Hoffmann GC, Timell TE (1972b) Polysaccharides in compression wood of tamarack (Larix laricina). 2. Isolation and structure of a xylan. Svensk Paperstidn 75:241–242

    CAS  Google Scholar 

  • Iwata T, Indrarti L, Azuma J (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5:215–218

    Article  CAS  Google Scholar 

  • Kim JS, Awano T, Yoshinaga A, Takabe K (2010a) Immunolocalization of β-1–4-galactan and its relationship with lignin distribution in developing compression wood of Cryptomeria japonica. Planta 232:109–119

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Awano T, Yoshinaga A, Takabe K (2010b) Temporal and spatial immunolocalization of glucomannans in differentiating earlywood tracheid cell walls of Cryptomeria japonica. Planta 232:545–554

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Awano T, Yoshinaga A, Takabe K (2010c) Immunolocalization and structural variations of xylan in differentiating earlywood tracheid cell walls of Cryptomeria japonica. Planta 232:817–824

    Article  PubMed  CAS  Google Scholar 

  • Larson PR (1969) Incorporation of 14C in the developing walls of Pinus resinosa tracheids: compression wood and opposite wood. Tappi 52:2170–2177

    CAS  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin–carbohydrate complex present in wood and in chemical pulps. Biomacromolecules 6:3467–3473

    Article  PubMed  CAS  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histo Chem 53:543–546

    CAS  Google Scholar 

  • Minor JL (1982) Chemical linkage of pine polysaccharides to lignin. J Wood Chem Technol 2:1–16

    Article  CAS  Google Scholar 

  • Mukoyoshi S, Azuma J, Koshijima T (1981) Lignin–carbohydrate complexes from compression wood of Pinus densiflora Sieb et. Zucc. Holzforschung 35:233–240

    Article  CAS  Google Scholar 

  • Nanayakkara B, Manley-Harris M, Suckling ID, Donaldson LA (2009) Quantitative chemical indicators to assess the gradation of compression wood. Holzforschung 63:431–439

    Article  CAS  Google Scholar 

  • Pettolino FA, Hoogenraad NJ, Ferguson C, Bacic A, Johnson E, Stone BA (2001) A (1 → 4)-β-mannan-specific monoclonal antibody and its use in the immunocytochemical localization of galactomannans. Planta 214:235–242

    Article  PubMed  CAS  Google Scholar 

  • Ruel K, Chevalier-Billosta V, Guillemin F, Sierra JB, Joseleau J-P (2006) The wood cell wall at the ultrastructural scale-formation and topochemical organization. Maderas, Ciencia y Tecnologiá 8:107–116

    Google Scholar 

  • Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. Holzforschung 63:121–129

    Article  Google Scholar 

  • Suzuki K, Kitamura S, Kato Y, Itoh T (2000) Highly substituted glucuronoarabinoxylans (hsGAXs) and low-branched xylans show a distinct localization pattern in the tissues of Zea mays L. Plant Cell Physiol 41:948–959

    Article  PubMed  CAS  Google Scholar 

  • Terashima N, Awano T, Takabe K, Yoshida M (2004) Formation of macromolecular lignin in ginko xylem cell walls as observed by field emission scanning electron microscopy. C R Biologie 327:903–910

    Article  CAS  Google Scholar 

  • Terashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginko tracheid. J Wood Sci 55:409–416

    Article  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms, vol. 1. Springer-Verlag, Berlin

    Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002a) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002b) CP/MAS 13C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360

    Article  CAS  Google Scholar 

  • Uhlin KI, Atalla RH, Thompson NS (1995) Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2:129–144

    Article  CAS  Google Scholar 

  • Yeh TF, Goldfarb B, Chang HM, Peszlen L, Braun JL, Kadla JF (2005) Comparison of morphological and chemical properties between juvenile wood and compression wood of loblolly pine. Holzforschung 59:669–674

    Article  CAS  Google Scholar 

  • Yeh TF, Braun JL, Goldfarb B, Chang HM, Kadla JF (2006) Morphological and chemical variations between juvenile wood, mature wood and compression wood of loblolly pine (Pinus taeda L.). Holzforschung 60:1–8

    Article  CAS  Google Scholar 

  • Zykwinska AW, Ralet M-C, Garnier CD, Thibault J-F (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    Article  PubMed  CAS  Google Scholar 

  • Zykwinska AW, Thibault JF, Ralet M-C (2007) Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related modes envisaged. J Exp Bot 58:1795–1802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Jong Sik Kim is grateful for the Research Fellowship for Young Scientists provided by the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Sik Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Awano, T., Yoshinaga, A. et al. Occurrence of xylan and mannan polysaccharides and their spatial relationship with other cell wall components in differentiating compression wood tracheids of Cryptomeria japonica . Planta 233, 721–735 (2011). https://doi.org/10.1007/s00425-010-1333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1333-4

Keywords

Navigation