Skip to main content
Log in

Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The accumulation of glycinebetaine (GB) is one of the adaptive strategies to adverse salt stress conditions. Although it has been demonstrated that barley plants accumulate GB in response to salt stress and various studies focused on GB synthesis were performed, its transport mechanism is still unclear. In this study, we identified a novel gene, HvProT2, encoding Hordeum vulgare GB/proline transporter from barley plants. Heterologous expression in yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of HvProT2 was highest for GB, intermediate for proline and lowest for γ-aminobutyric acid. Transient expression of fusions of HvProT2 and green fluorescent protein in onion epidermal cells revealed that HvProT2 is localized at the plasma membrane. Relative quantification of mRNA level of HvProT2 using semi-quantitative reverse transcription-polymerase chain reaction analysis showed that HvProT2 is constitutively expressed in both leaves and roots, and the expression level was higher in old leaves than young leaves and roots. Moreover, we found that HvProT2 was expressed in the mestome sheath and lateral root cap cells. We discussed the possible involvement of HvProT2 for salt stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BADH:

Betaine aldehyde dehydrogenase

BBD:

Barley betaine aldehyde dehydrogenase

CaMV:

Cauliflower mosaic virus

cDNA:

Complementary deoxyribonucleic acid

DIG:

Digoxigenin

DNA:

Deoxyribonucleic acid

DNP:

Dinitrophenol

EF:

Elongation factor

EST:

Expressed sequence tag

GABA:

γ-Aminobutyric acid

GB:

Glycinebetaine

GFP:

Green fluorescent protein

mRNA:

Messenger ribonucleic acid

ORF:

Open reading frame

P5CS:

Δ1-Pyrroline-5-carboxylate synthetase

PCR:

Polymerase chain reaction

RNA:

Ribonucleic acid

RT-PCR:

Reverse transcription-polymerase chain reaction

SD:

Synthetic dextrose

References

  • Adams A, Gottschling DE, Kaiser C, Stearns T (1997) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Arakawa K, Katayama M, Takabe T (1990) Levels of betaine and betaine aldehyde dehydrogenase activity in the green leaves, and etiolated leaves and roots of barley. Plant Cell Physiol 31:797–803

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD (1989) Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol 90:322–329

    Article  PubMed  CAS  Google Scholar 

  • Canny MJ (1986) Water pathways in wheat leaves. III. The passage of the mestome sheath and the function of the suberised lamellae. Physiol Plant 66:637–647

    Article  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Fedina IS, Georgieva K, Grigorova I (2002) Light-dark changes in proline content of barley leaves under salt stress. Biol Plant 45:59–63

    Article  CAS  Google Scholar 

  • Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T (2008) Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant 134:22–30

    Article  PubMed  CAS  Google Scholar 

  • Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus JM, Rentsch D (2005) The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137:117–126

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33:163–203

    Article  CAS  Google Scholar 

  • Hanson AD, May AM, Grumet R, Bode J, Jamieson GC, Rhodes D (1985) Betaine synthesis in chenopods: localization in chloroplasts. Proc Natl Acad Sci USA 82:3678–3682

    Article  PubMed  CAS  Google Scholar 

  • Harinasut P, Tsutsui K, Takabe T, Nomura M, Takabe T, Kishitani S (1996) Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings. Biosci Biotechnol Biochem 60:366–368

    Article  CAS  Google Scholar 

  • Hattori T, Mitsuya S, Fujiwara T, Jagendorf AT, Takabe T (2009) Tissue specificity of glycinebetaine synthesis in barley. Plant Sci 176:112–118

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Igarashi Y, Yoshiba Y, Takeshita T, Nomura S, Otomo J, Yamaguchi-Shinozaki K, Shinozaki K (2000) Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol 41:750–756

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Arakawa K, Mizuno K, Kishitani S, Takabe T (1993) Betaine aldehyde dehydrogenase in the Gramineae: levels in leaves of both betaine-accumulating and nonaccumulating cereal plants. Plant Cell Physiol 34:493–495

    CAS  Google Scholar 

  • Ishitani M, Nakamura T, Han SY, Takabe T (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27:307–315

    Article  PubMed  CAS  Google Scholar 

  • Jagendorf AT, Takabe T (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol 127:1827–1835

    Article  PubMed  CAS  Google Scholar 

  • Jauniaux JC, Vandenbol M, Vissers S, Broman K, Grenson M (1987) Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur J Biochem 164:601–606

    Article  PubMed  CAS  Google Scholar 

  • Ladyman JAR, Hitz WD, Hanson AD (1980) Translocation and metabolism of glycine betaine by barley plants in relation to water stress. Planta 150:191–196

    Article  CAS  Google Scholar 

  • Mäkelä P, Peltonen-Sainio P, Jokinen K, Pehu E, Setälä H, Hinkkanen R, Somersalo S (1996) Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant Sci 121:221–230

    Article  Google Scholar 

  • Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol Biochem 36:767–772

    Article  CAS  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of γ-aminobutyric acid during acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57:3755–3766

    Article  PubMed  CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T (1997) Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes. Plant J 11:1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Nomura M, Mori H, Jagendorf AT, Ueda A, Takabe T (2001) An isozyme of betaine aldehyde dehydrogenase in barley. Plant Cell Physiol 42:1088–1092

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Hibino T, Takabe T, Sugiyama T, Yokota A, Miyake H, Takabe T (1998) Transgenically produced glycinebetaine protects ribulose 1,5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC7942 under salt stress. Plant Cell Physiol 39:425–432

    CAS  Google Scholar 

  • Rahman MS, Matsumuro T, Miyake H, Takeoka Y (2001) Effects of salinity stress on the seminal root tip ultrastructures of rice seedlings (Oryza sativa L.). Plant Prod Sci 4:103–111

    Article  Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and γ-amino butyric acid in tomato pollen. Plant Cell 11:377–391

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Shi W, Sanmiya K, Shono M, Takabe T (2001) Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42:1282–1289

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Yamamoto-Yamane Y, Takabe T (2007) Salt stress enhances proline utilization in the apical region of barley roots. Biochem Biophys Res Commun 355:61–66

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S, Suzuki S, Futsuhara Y, Kawamitsu Y, Takabe T, Takabe T (2002) Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. J Biol Chem 277:18373–18382

    Article  PubMed  CAS  Google Scholar 

  • Weigel P, Weretilnyk EA, Hanson AD (1986) Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol 82:753–759

    Article  PubMed  CAS  Google Scholar 

  • West RW Jr, Yocum RR, Ptashne M (1984) Saccharomyces cerevisiae GAL1GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol Cell Biol 4:2467–2478

    PubMed  CAS  Google Scholar 

  • Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  PubMed  CAS  Google Scholar 

  • Yamada N, Promden W, Yamane K, Tamagake H, Hibino T, Tanaka Y, Takabe T (2009) Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet—importance of long-distance translocation of betaine under normal and salt-stressed conditions. J Plant Physiol 166:2058–2070

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Bruno André (Université Libre de Bruxelles, Belgium) for providing the yeast strain 22574d. This work was supported by Research Fellow of the Japan Society for the Promotion of Science (to T. F.), Grant-in-Aid for scientific research (Nos. 20380177 and 18880013) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T. T. and S. M., respectively) and The Salt Science Research Foundation (to S. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuko Takabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Supplementary material 2 (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, T., Mitsuya, S., Miyake, H. et al. Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley. Planta 232, 133–143 (2010). https://doi.org/10.1007/s00425-010-1155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1155-4

Keywords

Navigation