Skip to main content
Log in

Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) modifications occur during plant growth, development, and in response to environmental stimuli. Key modulators of ECM modification in vertebrates, the extracellular matrix metalloproteinases (MMPs), have also been described in a few plants. Here, we report the identification of Loblolly pine (Pinus taeda) Pta1-MMP and its characterization during seed development and germination. Pta1-MMP protein has the structural characteristics of other plant MMPs, the recombinant protein exhibits Zn2+-dependent protease activity, and is inhibited by EDTA and the active site-binding hydroxamate inhibitor GM6001. The Pta1-MMP gene is expressed in both embryo and megagametophyte, with transcript levels increasing in both during the period from proembryo to early cotyledonary stage, then declining during late embryogenesis and maturation drying. Protein extracts exhibited similar developmental-stage MMP-like activity. Seed germination was stimulated by GA3 and inhibited by ABA, and the timing of germination completion was mirrored by the presence of MMP-like protease activity in both water- and GA3-imbibed embryos. Pta1-MMP gene transcript levels increased in association with radicle protrusion for both GA3- and water-treated embryos, in agreement with MMP-like activity. In contrast, by 11 days after imbibition, Pta1-MMP gene transcripts in ABA-treated embryos were at levels similar to the other treatments, although MMP-like activity was not observed. The application of GM6001 during Loblolly pine seed germination inhibited radicle protrusion. Our results suggest that MMP activity may be involved in ECM modification, facilitating the cell division and expansion required during seed development, germination completion, and subsequent seedling establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

MMP:

Matrix metalloproteinase

GA3 :

Gibberellic acid 3

ABA:

Abscisic acid

AGP:

Arabinogalactan protein

HRGP:

Hydroxyproline-rich glycoprotein

TIMP:

Tissue inhibitor of matrix metalloproteinase

DE:

Dry embryo

DM:

Dry megagametophyte

DAI:

Days after imbibition

DMSO:

Dimethyl sulfoxide

References

  • Berger D, Altmann T (2000) A substilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131. doi:10.1101/gad.14.9.1119

    PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Blackman SA, Miedema M, Yeung EC, Staves MP (2001) Effect of the tetrapeptide RGDS on somatic embryogenesis in Daucus carota. Physiol Plant 112:567–571. doi:10.1034/j.1399-3054.2001.1120415.x

    Article  PubMed  CAS  Google Scholar 

  • Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth FX, Nagase H, Tschesche H et al (1999) Insights into MMP-TIMP interactions. Ann N Y Acad Sci 878:73–91

    Article  PubMed  CAS  Google Scholar 

  • Briggs CL (1996) An ultrastructural study of the embryo/endosperm interface in the developing seeds of Solanum nigrum L. zygote to mid torpedo stage. Ann Bot 78:295–304. doi:10.1006/anbo.1996.0124

    Article  Google Scholar 

  • Brownlee C (2002) Role of extracellular matrix in cell-cell signaling: paracrine paradigms. Curr Opin Plant Biol 5:396–401. doi:10.1016/S1369-5266(02)00286-8

    Article  PubMed  CAS  Google Scholar 

  • Buchholz JT, Stiemert ML (1945) Development of seeds and embryos in Pinus ponderosa, with special reference to seed size. Trans Ill Acad Sci 38:27–50

    Google Scholar 

  • Cannon MC, Terneus K, Hall Q, Tan L, Wang Y, Wegenhart BL, Chen L, Lamport DTA, Chen Y, Kieliszewski MJ (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA 105:2226–2231. doi:10.1073/pnas.0711980105

    Article  PubMed  CAS  Google Scholar 

  • Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185. doi:10.1080/10409230701340019

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Bradford KJ (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol 124:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Nonogaki H, Bradford KJ (2002) A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. J Exp Bot 53:215–223

    Article  PubMed  CAS  Google Scholar 

  • Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510. doi:10.1104/pp.106.087452

    Article  PubMed  CAS  Google Scholar 

  • Combier J-P, Vernié T, de Billy F, Yahyaoui FE, Mathis R, Gamas P (2007) The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. Plant Physiol 144:703–716. doi:10.1104/pp.106.092585

    Article  PubMed  CAS  Google Scholar 

  • Delorme VGR, McCabe PF, Kim DJ, Leaver CJ (2000) A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol 123:917–928

    Article  PubMed  CAS  Google Scholar 

  • Dow JM, Davies HA, Daniels MJ (1998) A metalloprotease from Xanthomonas campestris that specifically degrades proline/hydroxyproline-rich glycoproteins of the plant extracellular matrix. Mol Plant Microbe Interact 11:1085–1093. doi:10.1094/MPMI.1998.11.11.1085

    Article  PubMed  CAS  Google Scholar 

  • Dyachok JV, Wiweger M, Kenne L, von Arnold S (2002) Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128:523–533. doi:10.1104/pp.010547

    Article  PubMed  CAS  Google Scholar 

  • Egertsdotter U (1996) Regulation of somatic embryo development in Norway spruce (Picea abies). Dissertation submitted to Department of Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden

  • Egertsdotter U, von Arnold S (1995) Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plant 93:334–345. doi:10.1111/j.1399-3054.1995.tb01412.x

    Article  CAS  Google Scholar 

  • Flinn B (2008) Plant extracellular matrix metalloproteinases. Funct Plant Biol 35:1183–1193. doi:10.1071/FP08182

    Article  CAS  Google Scholar 

  • Ghosh S, Gepstein S, Heikkila J, Dumbroff EB (1988) Use of a scanning densitometer or an ELISA plate reader for measurement of nanogram amounts of protein in crude extracts from biological tissues. Anal Biochem 169:227–233

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Popova OV, Dietz KJ (2002) Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis. J Biol Chem 277:5541–5547. doi:10.1074/jbc.M106197200

    Article  PubMed  CAS  Google Scholar 

  • Graham JS, Xiong J, Gillikin JW (1991) Purification and developmental analysis of a metalloendoproteinase from the leaves of Glycine max. Plant Physiol 97:786–792

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JMU, Simpson DJ, Hyman SC, Ndimba BK, Slabas AR (2003) Ara12 subtilisin-like protease from Arabidopsis thaliana: purification, substrate specificity and tissue localization. Biochem J 370:57–67. doi:10.1042/BJ20021125

    Article  PubMed  CAS  Google Scholar 

  • Katembe WJ, Swatzell LJ, Makaroff CA, Kiss JZ (1997) Immunolocalization of integrin-like proteins in Arabidopsis and Chara. Physiol Plant 99:7–14. doi:10.1111/j.1399-3054.1997.tb03424.x

    Article  PubMed  CAS  Google Scholar 

  • Konieczny R, Bohdanowicz J, Czaplicki AZ, Przywara L (2005) Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell Tissue Organ Cult 83:201–208. doi:10.1007/s11240-005-5771-9

    Article  Google Scholar 

  • Leboeuf E, Guillon F, Thoiron S, Lahaye M (2005) Biochemical and immunohistochemical analysis of pectic polysaccharides I the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion. J Exp Bot 56:3171–3182. doi:10.1093/jxb/eri314

    Article  PubMed  CAS  Google Scholar 

  • Li J, Lease KA, Tax FE, Walker JC (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:5916–5921. doi:10.1073/pnas.091065998

    Article  PubMed  CAS  Google Scholar 

  • Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen OA (2002) The defective kernel1 (dek1) gene required for aluerone cell development in endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 99:5460–5465. doi:10.1073/pnas.042098799

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Dammann C, Bhattacharyya MK (2001) The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol 127:1788–1797. doi:10.1104/pp.127.4.1788

    Article  PubMed  CAS  Google Scholar 

  • Maidment JM, Moore D, Murphy GP, Murphy G, Clark IM (1999) Matrix metalloproteinase homologues from Arabidopsis thaliana—expression and activity. J Biol Chem 274:34706–34710. doi:10.1074/jbc.274.49.34706

    Article  PubMed  CAS  Google Scholar 

  • Malinowski R, Filipecki M (2002) The role of cell wall in plant embryogenesis. Cell Mol Biol Lett 7:1137–1151

    PubMed  CAS  Google Scholar 

  • Miura K, Jin JB, Hasegawa PM (2007) Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol 10:495–502. doi:10.1016/j.pbi.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  • Mo LH, Egertsdotter U, von Arnold S (1996) Secretion of specific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology. Ann Bot 77:143–152. doi:10.1006/anbo.1996.0016

    Article  CAS  Google Scholar 

  • Morcillo F, Hartmann C, Duval Y, Tregear JW (2001) Regulation of 7S globulin gene expression in zygotic and somatic embryos of oil palm. Physiol Plant 112:233–243. doi:10.1034/j.1399-3054.2001.1120212.x

    Article  PubMed  CAS  Google Scholar 

  • Pak JH, Liu CY, Huangpu J, Graham JS (1997) Construction and characterization of the soybean leaf metalloproteinase cDNA. FEBS Lett 404:283–288. doi:10.1016/S0014-5793(97)00141-5

    Article  PubMed  CAS  Google Scholar 

  • Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Organ Cult 86:87–101. doi:10.1007/s11240-006-9101-7

    Article  Google Scholar 

  • Pellenc D, Schmitt E, Gallet O (2004) Purification of a plant cell wall fibronectin-like adhesion protein involved in plant response to salt stress. Protein Expr Purif 34:208–214. doi:10.1016/j.pep.2003.11.011

    Article  PubMed  CAS  Google Scholar 

  • Pereira CS, Da Costa DS, Pereira S, De Moura Nogueira F, Albuquerque PM, Teixeira J, Faro C, Pissarra J (2008) Cardosins in postembryonic development of cardoon: towards an elucidation of the biological function of plant aspartic proteinases. Protoplasma 232:203–213. doi:10.1007/s00709-008-0288-9

    Article  PubMed  CAS  Google Scholar 

  • Ragster LV, Chrispeels MJ (1979) Azocoll-digesting proteinases in soybean leaves: characteristics and changes during leaf maturation and senescence. Plant Physiol 64:857–862

    Article  PubMed  CAS  Google Scholar 

  • Ramírez C, Testillano PS, Pintos B, Moreno-Risueño MA, Bueno MA, Risueño MC (2004) Changes in pectins and MAPKs related to cell development during early microspore embryogenesis in Quercus suber L. Eur J Cell Biol 83:213–225. doi:10.1078/0171-9335-00368

    Article  PubMed  Google Scholar 

  • Ringli C, Keller B, Ryser U (2001) Glycine-rich proteins as structural components of plant cell walls. Cell Mol Life Sci 58:1430–1441. doi:10.1007/PL00000786

    Article  PubMed  CAS  Google Scholar 

  • Rooney HCE, Van’t Klooster JW, Van Der Hoorn RAL, Joosten MHAJ, Jones JDG, De Wit PJGM (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–1786. doi:10.1126/science.1111404

    Article  PubMed  CAS  Google Scholar 

  • Sanders LC, Wang C-S, Walling LL, Lord EM (1991) A homolog of the substrate adhesion molecule vitronectin occurs in four species of flowering plants. Plant Cell 3:629–635

    Article  PubMed  CAS  Google Scholar 

  • Shevell DE, Kunkel T, Chua N-H (2000) Cell wall alterations in the Arabidopsis emb30 mutant. Plant Cell 12:2047–2059

    Article  PubMed  CAS  Google Scholar 

  • Sitrit Y, Hadfield KA, Bennett AB, Bradford KJ, Downie AB (1999) Expression of a polygalacturonase associated with tomato seed germination. Plant Physiol 121:419–428. doi:10.1104/pp.121.2.419

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516. doi:10.1146/annurev.cellbio.17.1.463

    Article  PubMed  CAS  Google Scholar 

  • Sutton B (2002) Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann For Sci 59:657–661. doi:10.1051/forest:2002052

    Article  Google Scholar 

  • Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Machida C, Machida Y (2001) A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128:4681–4689

    PubMed  CAS  Google Scholar 

  • Taylor AA, Horsch A, Rzepczyk A, Hasenkampf CA, Riggs CD (1997) Maturation and secretion of a serine proteinase is associated with events of late microsporogenesis. Plant J 12:1261–1271. doi:10.1046/j.1365-313x.1997.12061261.x

    Article  PubMed  CAS  Google Scholar 

  • Van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    Article  PubMed  Google Scholar 

  • Veronesi C, Bonnin E, Calvez S, Thalouarn P, Simier P (2007) Activity of secreted cell wall-modifying enzymes and expression of peroxidase-encoding gene following germination of Orobanche ramosa. Biol Plantarum 51:391–394. doi:10.1007/s10535-007-0084-y

    Article  CAS  Google Scholar 

  • Vieira M, Pissarra J, Veríssimo P, Castanheira P, Costa Y, Pires E, Faro C (2001) Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol 45:529–539. doi:10.1023/A:1010675015318

    Article  PubMed  CAS  Google Scholar 

  • Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. doi:10.1161/01.RES.0000070112.80711.3D

    Article  PubMed  CAS  Google Scholar 

  • Woessner FJ, Nagase H (2000) Matrix metalloproteinases and TIMPs. Oxford University Press, Oxford

    Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Sixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988. doi:10.1038/sj.emboj.7600086

    Article  PubMed  CAS  Google Scholar 

  • Yeo U-D, Kohmura H, Nakagawa N, Sakurai N (1998) Quantitative and qualitative changes of cell wall polysaccharides during somatic embryogenesis and plantlet development of Asparagus (Asparagus officinalis L.). Plant Cell Physiol 39:607–614

    CAS  Google Scholar 

Download references

Acknowledgments

This work represents a portion of S. Ratnaparkhe’s doctoral dissertation. Many thanks to Dr. Amy Brunner and Dr. Ian Clark for their comments during the course of this study, Kelly Merricks for her help in gene cloning, and Dr. Jerzy Nowak for his comments on the article. This work was funded through the “High Value Horticulture and Forestry – Virginia” Special Grants (Project No. 2003-38891-02112) and HATCH funds (Project No. VA-135816) from the United States Department of Agriculture—CSREES, and operating funds from the Commonwealth of Virginia to the Institute for Advanced Learning and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry S. Flinn.

Additional information

E. M. Ulrika Egertsdotter and Barry S. Flinn contributed equally to project development, support, and supervision.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1155 kb)

Supplementary material 2 (TIFF 1703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratnaparkhe, S.M., Egertsdotter, E.M.U. & Flinn, B.S. Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. Planta 230, 339–354 (2009). https://doi.org/10.1007/s00425-009-0949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0949-8

Keywords

Navigation