Skip to main content

Advertisement

Log in

Sulphur deprivation limits Fe-deficiency responses in tomato plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The aim of this work was to clarify the role of S supply in the development of the response to Fe depletion in Strategy I plants. In S-sufficient plants, Fe-deficiency caused an increase in the Fe(III)-chelate reductase activity, 59Fe uptake rate and ethylene production at root level. This response was associated with increased expression of LeFRO1 [Fe(III)-chelate reductase] and LeIRT1 (Fe2+ transporter) genes. Instead, when S-deficient plants were transferred to a Fe-free solution, no induction of Fe(III)-chelate reductase activity and ethylene production was observed. The same held true for LeFRO1 gene expression, while the increase in 59Fe2+ uptake rate and LeIRT1 gene over-expression were limited. Sulphur deficiency caused a decrease in total sulphur and thiol content; a concomitant increase in 35SO4 2− uptake rate was observed, this behaviour being particularly evident in Fe-deficient plants. Sulphur deficiency also virtually abolished expression of the nicotianamine synthase gene (LeNAS), independently of the Fe growth conditions. Sulphur deficiency alone also caused a decrease in Fe content in tomato leaves and an increase in root ethylene production; however, these events were not associated with either increased Fe(III)-chelate reductase activity, higher rates of 59Fe uptake or over-expression of either LeFRO1 or LeIRT1 genes. Results show that S deficiency could limit the capacity of tomato plants to cope with Fe-shortage by preventing the induction of the Fe(III)-chelate reductase and limiting the activity and expression of the Fe2+ transporter. Furthermore, the results support the idea that ethylene alone cannot trigger specific Fe-deficiency physiological responses in a Strategy I plant, such as tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DW:

Dry weight

NS:

Nutrient solution

SAM:

S-adenosylmethionine

References

  • Astolfi S, Zuchi S, Passera C, Cesco S (2003) Does the sulphur assimilation pathway play a role in the response to Fe deficiency in maize (Zea mays L.) plants? J Plant Nutr 26:2111–2121

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Cesco S, Varanini Z, Pinton R (2004) Influence of iron nutrition on sulphur uptake and metabolism in maize (Zea mays L.) roots. Soil Sci Plant Nutr 50:1079–1083

    CAS  Google Scholar 

  • Astolfi S, Cesco S, Zuchi S, Neumann G, Roemheld V (2006a) Sulphur starvation reduces phytosiderophores release by Fe-deficient barley plants. Soil Sci Plant Nutr 52:80–85

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Cesco S, Sanità di Toppi L, Pirazzi D, Badiani M, Varanini Z, Pinton R (2006b) Fe deficiency induces sulphate uptake and modulates redistribution of reduced sulphur pool in barley plants. Func Plant Biol 33:1055–1061

    Article  CAS  Google Scholar 

  • Badiani M, Paolacci AR, D’Annibale A, Miglietta F, Raschi A (1997) Plant response to elevated carbon dioxide. In: Raschi A, Miglietta F, Tognetti R, Van Gardingen PR (eds) Evidence from natural springs. Cambridge University Press, Cambridge, pp 221–241

    Google Scholar 

  • Bardsley CE, Lancaster JD (1962) Determination of reserve sulphur and soluble sulphate in soils. Soil Sci Soc Am Proc 24:265–268

    Article  Google Scholar 

  • Bienfait HF, van den Briel W, Mesland-Mul NT (1985) Free space iron pools in roots. Plant Physiol 78:596–600

    Article  PubMed  CAS  Google Scholar 

  • Bouranis DL, Chorianopoulou SN, Protonotarios VE, Siyannis VF, Hopkins L, Hawkesford MJ (2003) Leaf response of young iron-inefficient maize plants to sulphur deprivation. J Plant Nutr 26:1189–1202

    Article  CAS  Google Scholar 

  • Cesco S, Römheld V, Varanini Z, Pinton R (2000) Solubilisation of iron by water-extractable humic substances. J Plant Nutr Soil Sci 163:285–290

    Article  CAS  Google Scholar 

  • Dell’Orto M, Santi S, De Nisi P, Cesco S, Varanini Z, Pinton R, Zocchi G (2000) Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity. J Exp Bot 51:695–701

    Article  PubMed  Google Scholar 

  • Douchkov D, Herbik A, Koch G, Mock HP, Melzer M, Stephan UW, Baumlein H (2002) Nicotianamine synthase: gene isolation, gene transfer and application for the manipulation of plant iron assimilation. Plant Soil 241:115–119

    Article  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transport from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Barker AV (1993) Polyamine concentration and ethylene evolution in tomato plants under nutritional stress. Hort Sci 28:109–110

    CAS  Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126:407–417

    Article  CAS  Google Scholar 

  • Hesse H, Hoefgen R (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci 8:259–262

    Article  PubMed  CAS  Google Scholar 

  • Katz YS, Galili G, Amir R (2006) Regulatory role of cystathionine-γ-synthase and de novo synthesis of methionine in ethylene production during tomato fruit ripening. Plant Mol Biol 61:255–268

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima K, Kawai S (1997) Relationship between sulphur metabolism and biosynthesis of phytosiderophores in barley roots. In: Ando T, Fujita K, Nae T, Matsunoto H, Nori S, Sekiya J (eds) Plant nutrition—for sustainable food production and environment. Kluwer, The Netherlands, pp 285–286

    Google Scholar 

  • Li L, Cheng X, Ling H-Q (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol 54:125–136

    Article  PubMed  Google Scholar 

  • Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103

    Article  PubMed  CAS  Google Scholar 

  • Lucena C, Waters BM, Romera FJ, García MJ, Morales M, Alcántara E, Pérez-Vicente R (2006) Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. J Exp Bot 57:4145–4154

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (1995) A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use Manag 11:110–114

    Article  Google Scholar 

  • McGrath SP, Zhao FJ, Whiters PJA (1996) Development of sulphur deficiency in crops and its treatment. In: Proceedings of the fertilisers society, No. 379. The Fertilisers Society, Peterborough, UK

  • Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulphur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318

    Article  PubMed  CAS  Google Scholar 

  • Pinton R, Cesco S, Santi S, Agnolon F, Varanini Z (1999) Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants. Plant Soil 210:145–157

    Article  CAS  Google Scholar 

  • Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635–674

    Article  CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  PubMed  CAS  Google Scholar 

  • Roje S (2006) S-adenosyl-l-methionine: beyond the universal methyl group donor. Phytochemistry 67:1686–1698

    Article  PubMed  CAS  Google Scholar 

  • Romera FJ, Alcántara E (1994) Iron-deficiency stress responses in cucumber (Cucumis sativus L.) roots: a possible role for ethylene? Plant Physiol 105:1133–1138

    PubMed  CAS  Google Scholar 

  • Romera FJ, Alcántara E (2004) Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy I plants. Func Plant Biol 31:315–328

    Article  CAS  Google Scholar 

  • Romera FJ, Alcántara E, De La Guardia MD (1999) Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Ann Bot 83:51–55

    Article  CAS  Google Scholar 

  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234

    Article  Google Scholar 

  • Römheld V, Marschner H (1981) Iron-deficiency-stress-induced morphological and physiological changes in root tips of sunflower. Physiol Plant 53:354–360

    Article  Google Scholar 

  • Rudolph A, Becker R, Scholz T, Prochàzka Z, Toman J, Macek T, Herout V (1985) The occurrence of the amino acid nicotianamine in plants and microrganisms. A reinvestigation. Biochem Physiol Pflanz 180:557–563

    CAS  Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signalling pathways in plants. Trends Plant Sci 8:188–193

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Zaharieva T, Römheld V (2000) Specific Fe2+ uptake system in strategy I plants inducible under Fe deficiency. J Plant Nutr 23:1733–1744

    Article  CAS  Google Scholar 

  • Zhang FS, Römheld V, Marschner H (1991) Role of the root apoplasm for iron acquisition by wheat plants. Plant Physiol 97:1302–1305

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by grants from Italian M.I.U.R.-COFIN 2006. We thank Prof. Gian Piero Soressi (Department of Agrobiology and Agrochemistry, Viterbo, Italy) for providing seeds of tomato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Astolfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuchi, S., Cesco, S., Varanini, Z. et al. Sulphur deprivation limits Fe-deficiency responses in tomato plants. Planta 230, 85–94 (2009). https://doi.org/10.1007/s00425-009-0919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0919-1

Keywords

Navigation