Skip to main content
Log in

Characterization of trimeric acetylcholinesterase from a legume plant, Macroptilium atropurpureum Urb.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We recently identified plant acetylcholinesterases (E.C.3.1.1.7; AChEs) homologous to the AChE purified from a monocotyledon, maize, that are distinct from the animal AChE family. In this study, we purified, cloned and characterized an AChE from a dicotyledon, siratro. The full-length cDNA of siratro AChE is 1,441 nucleotides, encoding a 382-residue protein that includes a signal peptide. This AChE is a disulfide-linked 125-kDa homotrimer consisting of 41–42 kDa subunits, in contrast to the maize AChE, which exists as a mixture of disulfide and non-covalently linked 88-kDa homodimers. The plant AChEs apparently consist of various quaternary structures, depending on the plant species, similar to the animal AChEs. We compared the enzymatic properties of the dimeric maize and trimeric siratro AChEs. Similar to electric eel AChE, both plant AChEs hydrolyzed acetylthiocholine (or acetylcholine) and propionylthiocholine (or propionylcholine), but not butyrylthiocholine (or butyrylcholine), and their specificity constant was highest against acetylcholine. There was no significant difference between the enzymatic properties of trimeric and dimeric AChEs, although two plant AChEs had low substrate turnover numbers compared with electric eel AChE. The two plant AChE activities were not inhibited by excess substrate concentrations. Thus, similar to some plant AChEs, siratro and maize AChEs showed enzymatic properties of both animal AChE and animal BChE. On the other hand, both siratro and maize AChEs exhibited low sensitivity to the AChE-specific inhibitor neostigmine bromide, dissimilar to other plant AChEs. These differences in enzymatic properties of plant AChEs may reflect the phylogenetic evolution of AChEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

PpCh:

Propionylcholine

BCh:

Butyrylcholine

ASCh:

Acetylthiocholine

PpSCh:

Propionylthiocholine

BSCh:

Butyrylthiocholine

AChE:

Acetylcholinesterase

DTNB:

5, 5′-Dithiobis-2-nitrobenzoic acid

References

  • Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552

    Article  PubMed  CAS  Google Scholar 

  • Ballal S, Ellias R, Fluck R, Jameton R, Leber P, Lirio R, Salama D (1993) The synthesis and bioassay of indole-3-acetylcholine. Plant Physiol Biochem 31:249–255

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brick DJ, Brumlik MJ, Buckley JT, Cao JX, Davies PC, Misra S, Tranbarger TJ, Upton C (1995) A new family of lipolytic plant enzymes with members in rice, Arabidopsis and maize. FEBS Lett 377:475–480

    Article  PubMed  CAS  Google Scholar 

  • Chatonnet A, Lockridge O (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260:625–634

    PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, Von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucl Acids Res 30:235–238

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fluck RA, Jaffe MJ (1974a) The acetylcholine system in plants. In: Smith H (ed) Current advances in plant sciences. Sciences engineering medical and data Ltd, Oxford, pp 1–22

    Google Scholar 

  • Fluck RA, Jaffe MJ (1974b) The distribution of cholinesterases in plant species. Phytochemistry 13:2475–2480

    Article  CAS  Google Scholar 

  • Gnagey AL, Forte M, Rosenberry TL (1987) Isolation and characterization of acetylcholinesterase from Drosophila. J Biol Chem 262:13290–13298

    PubMed  CAS  Google Scholar 

  • Gong XQ, Bisson MA (2002) Acetylcholine-activated Cl channel in the Chara tonoplast. J Membr Biol 188:107–113

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Maheshwari SC (1980) Preliminary characterization of a cholinesterase from roots of Bengal gram-Ciecr arietinum L. Plant Cell Physiol 21:1675–1679

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program forWindows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hartmann E, Gupta R (1989) Acetylcholine as a signaling system in plants. In: Boss WE, Marre DJ (eds) Second messengers in plant growth and development. Liss, New York, pp 257–287

    Google Scholar 

  • Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci 72:1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Hotelier T, Renault L, Cousin X, Negre V, Marchot P, Chatonnet A (2004) ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins. Nucleic Acids Res 32:D145–D147

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Ge X, Sun M (2000) Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA. BioTechniques 28:432–434

    PubMed  Google Scholar 

  • Kandzia R, Grimm R, Eckerskorn C, Lindemann P, Luckner M (1998) Purification and characterization of lanatoside 15′-O-acetylesterase from Digitalis lanata Ehrh. Planta 204:383–389

    Article  PubMed  CAS  Google Scholar 

  • Kawashima K, Misawa H, Moriwaki Y, Fujii YX, Fujii T, Horiuchi Y, Yamada T, Imanaka T, Kamekura M (2007) Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 80:2206–2209

    Article  PubMed  CAS  Google Scholar 

  • Liao J, Nørgaard-Pedersen B, Brodbeck U (1993) Subunit association and glycosylation of acetylcholinesterase from monkey brain. J Neurochem 61:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette F (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  PubMed  CAS  Google Scholar 

  • Momonoki YS (1992) Occurrence of acetylcholine-hydrolyzing activity at the stele-cortex interface. Plant Physiol 99:130–133

    Article  PubMed  CAS  Google Scholar 

  • Momonoki YS (1997) Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol 114:47–53

    PubMed  CAS  Google Scholar 

  • Momonoki YS, Momonoki T (1991) Changes in acetylcholine levels following leaf wilting and leaf recovery by heat stress in plant cultivars. Jpn J Crop Sci 60:283–290

    CAS  Google Scholar 

  • Momonoki YS, Momonoki T (1992) The Influence of heat stress on acetylcholine content and its hydrolyzing activity in Macroptilium atropurpureum cv. Siratro. Jpn J Crop Sci 6:112–118

    Google Scholar 

  • Muralidharan M, Soreq H, Mor TS (2005) Characterizing pea acetylcholinesterase. Chem Biol Interact 157–158:406–407

    Article  PubMed  CAS  Google Scholar 

  • Naranjo MA, Forment J, Roldan M, Serrano R, Vicente O (2006) Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ 29:1890–1900

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599

    Article  PubMed  CAS  Google Scholar 

  • Riov J, Jaffe MJ (1973) Cholinesterases from plant tissues. I. Purification and characterization of a cholinesterase from mung bean roots. Plant Physiol 51:520–528

    PubMed  CAS  Google Scholar 

  • Roshchina VV (1987) Action of acetylcholine agonists and antagonists on reactions of photosynthetic membranes. Photosynthetica 21:296–300

    CAS  Google Scholar 

  • Roshchina VV (2001) Neurotransmitters in plant life. Science Publishers Inc, Enfield, pp 99–150

  • Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguri S, Momonoki YS (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol 138:1359–1371

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method : a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  • Standaert FG (1990) Neuromuscular physiology. In: Miller RD (ed) Anesthesia. Churchill Livingstone, New York, pp 650–684

    Google Scholar 

  • Talesa V, Principato GB, Giovannini E, Di Giovanni MV, Rosi G (1993) Dimeric forms of cholinesterase in Sipunculus nudus. Eur J Biochem 215:267–275

    Article  PubMed  CAS  Google Scholar 

  • Taylor P, Radic Z (1994) The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol 34:281–320

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface—flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tougu V (2001) Acetylcholinesterase: mechanism of catalysis and inhibition. Curr Med Chem 1:155–170

    CAS  Google Scholar 

  • Toutant JP (1989) Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol 32:423–446

    Article  PubMed  CAS  Google Scholar 

  • Tretyn A, Kendrick RE (1990) Induction of leaf unrolling by phytochrome and acetylcholine in etiolated wheat seedlings. Photochem Photobiol 52:123–129

    Article  CAS  Google Scholar 

  • Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20:178–179

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kilbinger H, Bittinger F, Kirkpatrick CJ (2001) The biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol 85:2–10

    Article  PubMed  CAS  Google Scholar 

  • Wiśniewska J, Tretyn A (2003) Acetylcholinesterase activity in Lycopersicon esculentum and its phytochrome mutants. Plant Physiol Biochem 41:711–717

    Article  CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    Article  PubMed  CAS  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Japan Space Forum. Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank data libraries under accession number AB294246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshie S. Momonoki.

Additional information

Kosuke Yamamoto and Yoshie S. Momonoki contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, K., Oguri, S. & Momonoki, Y.S. Characterization of trimeric acetylcholinesterase from a legume plant, Macroptilium atropurpureum Urb.. Planta 227, 809–822 (2008). https://doi.org/10.1007/s00425-007-0658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0658-0

Keywords

Navigation