Skip to main content
Log in

Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The Chlamydomonas reinhardtii tla1 (truncated light-harvesting chlorophyll antenna size) mutant was generated upon DNA insertional mutagenesis and shown to specifically possess a smaller than wild type (WT) chlorophyll antenna size in both photosystems. Molecular and genetic analysis revealed that the exogenous plasmid DNA was inserted at the end of the 5′ UTR and just prior to the ATG start codon of a hitherto unknown nuclear gene (termed Tla1), which encodes a protein of 213 amino acids. The Tla1 gene in the mutant is transcribed with a new 5′ UTR sequence, derived from the 3′ end of the transforming plasmid. This replacement of the native 5′ UTR and promoter regions resulted in enhanced transcription of the tla1 gene in the mutant but inhibition in the translation of the respective tla1 mRNA. Transformation of the tla1 mutant with WT Tla1 genomic DNA successfully rescued the mutant. These results are evidence that polymorphism in the 5′ UTR of the Tla1 transcripts resulted in the tla1 phenotype and that expression of the Tla1 gene is a prerequisite for the development/assembly of the Chl antenna in C. reinhardtii. A blast search with the Tla1 deduced amino acid sequence revealed that this protein is highly conserved in many eukaryotes. It showed homology to a protein of unknown function in Arabidopsis thaliana (73%), Oryza sativa (76%), Drosophila melanogaster (71%) and Homo sapiens (67%). The Tla1 gene apparently regulates genes that define the Chl antenna size in the photosynthetic apparatus of C. reinhardtii. Potential applications of the Tla1 gene in photosynthesis and biotechnology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

PS:

Photosystem

LHC:

Light-harvesting complex

tla :

Truncated light-harvesting chlorophyll antenna

UTR:

Untranslated region

References

  • Anderson JM (1986) Photoregulation of the composition, function and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136

    Article  CAS  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Bjorkman O, Boardman NK, Anderson JM, Thorne SW, Goodchild DJ, Puliotis NA (1972) Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnegie Inst Yearb 71:115–135

    Google Scholar 

  • Davies J, Weeks DP, Grossman AR (1992) Expression of the arylsulfatase gene from the 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 20:2959–2965

    Article  PubMed  CAS  Google Scholar 

  • Debuchy R, Purton S, Rochaix JD (1989) The arginosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8:2803–2809

    PubMed  CAS  Google Scholar 

  • Emerson R, Arnold W (1932a) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15:391–420

    Article  CAS  Google Scholar 

  • Emerson R, Arnold W (1932b) The photochemical reactions in photosynthesis. J Gen Physiol 16:191–205

    Article  CAS  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signalled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241

    Article  PubMed  CAS  Google Scholar 

  • Falbel T, Meehl JB, Staehelin LA (1996) Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol 112:821–832

    Article  PubMed  CAS  Google Scholar 

  • Fargo DC, Boynton JE, Gillham NW (1999) Mutations altering the predicted secondary structure of a chloroplast 5′ untranslated region affect its physical and biochemical properties as well as its ability to promote translation of reporter mRNAs both in the Chlamydomonas reinhardtii chloroplast and in Escherichia coli. Mol Cell Biol 19:6980–6990

    PubMed  CAS  Google Scholar 

  • Gaffron H, Wohl K (1936) Zur theorie der assimilation. Naturwissenschaften 24:81–90

    Article  CAS  Google Scholar 

  • Glick RE, Melis A (1988) Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts. Biochim Biophys Acta 934:151–155

    Article  CAS  Google Scholar 

  • Gumpel NJ, Purton S (1994) Playing tag with Chlamydomonas. Trends Cell Biol 4:299–301

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas source book: a comprehensive guide to biology and laboratory use. Academic, San Diego

    Google Scholar 

  • Hobe S, Fey H, Rogl H, Paulsen H (2003) Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J Biol Chem 278:5912–5919

    Article  PubMed  CAS  Google Scholar 

  • Humbeck K, Krupinska K (2003) The abundance of minor chlorophyll a/b-binding proteins CP29 and LHCl of barley (Hordeum vulgare L.) during leaf senescence is controlled by light. J Exp Bot 54:375–383

    Article  PubMed  CAS  Google Scholar 

  • Huner NPA, Oquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Jansson S, Pichersky E, Bassi R, Green BR, Ikeuchi M, Melis A, Simpson DJ, Spangfort M, Staehelin LA, Thornber JP (1992) A nomenclature for the genes encoding the chlorophyll a/b-binding proteins of higher plants. Plant Mol Biol Rep 10:242–253

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution. Nature 411(6840):909–917

    Article  PubMed  CAS  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  PubMed  CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • LaRoche J, Mortain-Bertrand A, Falkowski PG (1991) Light-intensity-induced changes in cab mRNA and light-harvesting complex II apoprotein levels in the unicellular chlorophyte Dunaliella tertiolecta. Plant Physiol 97:147–153

    PubMed  CAS  Google Scholar 

  • Ley AC, Mauzerall DC (1982) Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta 680:95–106

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Masuda T, Polle JEW, Melis A (2002) Biosynthesis and distribution of chlorophyll among the photosystems during recovery of the green alga Dunaliella salina from irradiance stress. Plant Physiol 128:603–614

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Tanaka A, Melis A (2003) Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol Biol 51:757–771

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Falk S, Huner NPA (1995) Photosystem II excitation pressure and development of resistance to photoinhibition. 1. Light harvesting complex II abundance and zeaxanthin content in Chlorella vulgaris. Plant Physiol 107:687–694

    PubMed  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Article  CAS  Google Scholar 

  • Melis A (1996) Excitation energy transfer: functional and dynamic aspects of Lhc (cab) proteins. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 523–538

    Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrogen Energy 27:1217–1228

    Article  CAS  Google Scholar 

  • Melis A (2005) Bioengineering of green algae to enhance photosynthesis and hydrogen production. In: Collins AF, Critchley C (eds) Artificial photosynthesis: from basic biology to industrial application, Chap. 12. Wiley, Weinheim, Germany, pp. 229–240

  • Melis A, Spangfort M, Andersson B (1987) Light-absorption and electron-transport balance between PSII and PSI in spinach chloroplasts. Photochem Photobiol 45:129–136

    CAS  Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–552

    Article  Google Scholar 

  • Nakada E, Asada Y, Arai T, Miyake J (1995) Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. J Ferment Bioeng 80:53–57

    Article  CAS  Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J Appl Phycol 9:503–510

    CAS  Google Scholar 

  • Nakajima Y, Ueda R (1999) Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment. J Appl Phycol 11:195–201

    Article  Google Scholar 

  • Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184

    Article  CAS  Google Scholar 

  • Ohtsuka T, Ito H, Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts. Plant Physiol 113:137–147

    PubMed  CAS  Google Scholar 

  • Pichersky E, Jansson S (1996) The light-harvesting chlorophyll a/b-binding polypeptides and their genes in angiosperm and gymnosperm species. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 507–521

    Google Scholar 

  • Polle JEW, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in wild type and a Chl b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta 211:335–344

    Article  PubMed  CAS  Google Scholar 

  • Polle JEW, Niyogi KK, Melis A (2001) Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 42:482–491

    Article  PubMed  CAS  Google Scholar 

  • Polle JEW, Kanakagiri S, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49–59. DOI 10.1007/s00425-002-0968-1

    Google Scholar 

  • Powles S (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44

    Article  CAS  Google Scholar 

  • Ruban AV, Wentworth M, Yakushevska AE, Andersson J, Lee PJ, Keegstra W, Dekker JP, Boekema EJ, Jansson S, Horton P (2003) Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Nature 421:648–652

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol. 1, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 1.53–1.105

  • Simpson DJ, Knoetzel J (1996) Light-harvesting complexes of plants and algae: introduction, survey and nomenclature. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 493–506

    Google Scholar 

  • Smith BM, Morrissey PJ, Guenther JE, Nemson JA, Harrison MA, Allen JF, Melis A (1990) Response of the photosynthetic apparatus in Dunaliella salina (green algae) to irradiance stress. Plant Physiol 93:1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Stevens DR, Rochaix J-D, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251:23–30

    PubMed  CAS  Google Scholar 

  • Sueoka N (1960) Mitotic replication of deoxyribonucleic acids in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 46:83–91

    Article  PubMed  CAS  Google Scholar 

  • Sukenik A, Bennett J, Falkowski PG (1988) Changes in the abundance of individual apoproteins of light-harvesting chlorophyll a/b-protein complexes of photosystem I and II with growth irradiance in the marine chlorophyte Dunaliella tertiolecta. Biochim Biophys Acta 932:206–215

    Article  CAS  Google Scholar 

  • Tanaka A, Melis A (1997) Irradiance-dependent changes in the size and composition of the chlorophyll a–b light-harvesting complex in the green alga Dunaliella salina. Plant Cell Physiol 38:17–24

    CAS  Google Scholar 

  • Webb MR, Melis A (1995) Chloroplast response in Dunaliella salina to irradiance stress. Effect on thylakoid membrane assembly and function. Plant Physiol 107:885–893

    CAS  Google Scholar 

  • Yakovlev AG, Taisova AS, Fetisova ZG (2002) Light control over the size of an antenna unit building block as an efficient strategy for light harvesting in photosynthesis. FEBS Lett 512:129–132

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by DOE-UCB Cooperative Agreement DE-FC36-00GO10536 and DE-FG36-05GO15041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Melis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetali, S.D., Mitra, M. & Melis, A. Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225, 813–829 (2007). https://doi.org/10.1007/s00425-006-0392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0392-z

Keywords

Navigation