Skip to main content
Log in

Modulation of higher-plant NAD(H)-dependent glutamate dehydrogenase activity in transgenic tobacco via alteration of beta subunit levels

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 08 February 2007

Abstract

Glutamate dehydrogenase (GDH; EC 1.4.1.2–1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the α- or β-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a β-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of β-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (~51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH β-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a β-subunit gene, suggesting that the reduction in β-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NH +4 :

Ammonium

GDH:

Glutamate dehydrogenase

GOGAT:

Glutamate synthase

GS:

Glutamine synthetase

2-OG:

2-oxoglutarate

PVP:

Polyvinylpyrrolidone

PVPP:

Polyvinylpolypyrrolidone

UPGMA:

Unweighted Pair Group Mean Average

References

  • Ameziane R, Bernhard K, Lightfoot D (2000) Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil 221:47–57

    Article  CAS  Google Scholar 

  • Bhadula SK, Shargool PD (1991) A plastidial localization and origin of l-glutamate dehydrogenase in a soybean cell culture. Plant Physiol 95:258–263

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Britton KL, Baker PJ, Rice DW, Stillman TJ (1992) Structural relationship between the hexameric and tetrameric family of glutamate dehydrogenases. Eur J Biochem 209:851–859

    Article  PubMed  CAS  Google Scholar 

  • Cammaerts D, Jacobs M (1983) A study of the polymorphism and the genetic control of the glutamate dehydrogenase isozymes in Arabidopsis thaliana. Plant Sci Lett 31:65–73

    Article  CAS  Google Scholar 

  • Cammaerts D, Jacobs M (1985) A study of the role of glutamate dehydrogenase (EC 1.4.1.2) in the nitrogen metabolism of Arabidopsis thaliana. Planta 163:517–526

    Article  CAS  Google Scholar 

  • Cerutti H (2003) RNA interference: traveling in the cell and gaining functions? Trends Genet 19:39–46

    Article  PubMed  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Dubois F, Brugiere N, Sangwan RS, Hirel B (1996) Localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ- and cell-specific patterns of protein synthesis and gene expression. Plant Mol Biol 31:803–817

    Article  PubMed  CAS  Google Scholar 

  • Dubois F, Terce-Laforgue T, Gonzalez-Moro M-B, Estavillo J-M, Sangwan R, Gallais A, Hirel B (2003) Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiol Biochem 41:565–576

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ficarelli A, Tassi F, Restivo FM (1999) Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia. Plant Cell Physiol 40:339–342

    PubMed  CAS  Google Scholar 

  • Finnemann J, Schjoerring JK (2000) Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14–3-3 protein interaction. Plant J 24:171–181

    Article  PubMed  CAS  Google Scholar 

  • Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Guiltinan MJ, Ma DP, Barker RF, Bustos MM, Cyr RJ, Yadegari R, Fosket DE (1987) The isolation, characterization and sequence of two divergent beta-tubulin genes from soybean (Glycine max L.). Plant Mol Biol 10:171–184

    Article  CAS  Google Scholar 

  • Hirel B, Marsolier MC, Hoarau A, Hoarau J, Brangeon J, Schafer R, Verma DPS (1992) Forcing expression of a soybean root glutamine synthetase gene in tobacco leaves induces a native gene encoding cytosolic enzyme. Plant Mol Biol 20:207–218

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huber JL, Huber SC, Campbell WH, Redinbaugh MG (1992) Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys 296:58–65

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3908

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Kretsinger RH (1995) Calcium-binding proteins .1. EF-hands. Prot Profile 2:305–490

    CAS  Google Scholar 

  • Kisaka H, Kida T (2003) Transgenic tomato plant carrying a gene for NADP-dependent glutamate dehydrogenase (gdhA) from Aspergillus nidulans. Plant Sci 164:35–42

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Arizona State University, Arizona

    Google Scholar 

  • Lea PJ, Miflin BJ (1974) An alternative route for nitrogen assimilation in higher plants. Nature 251:614–616

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Thurman DA (1972) Intracellular location and properties of plant L-glutamate dehydrogenases. J Exp Bot 23:440–449

    Article  CAS  Google Scholar 

  • Lewis O, James DM, Hewitt EJ (1982) Nitrogen assimilation in barley (Hordeum vulgare L. Cv Mazurka) in response to nitrate and ammonium nutrition. Ann Bot 49:39–49

    CAS  Google Scholar 

  • Loulakakis CA, Roubelakis-Angelakis KA (1990a) Immunocharacterization of NADH-glutamate dehydrogenase from Vitis vinifera L. Plant Physiol 94:109–113

    Article  PubMed  CAS  Google Scholar 

  • Loulakakis CA, Roubelakis-Angelakis KA (1990b) Intracellular localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.: purification and characterization of the major leaf isoenzyme. J Exp Bot 41:1223–1230

    Article  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA (1991) Plant NAD(H)-glutamate dehydrogenase consists of two subunit polypeptides and their participation in the seven isoenzymes occurs in an ordered ratio. Plant Physiol 97:104–111

    Article  PubMed  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA (1996) The seven NAD(H)-glutamate dehydrogenase isoenzymes exhibit similar anabolic and catabolic activities. Physiol Plant 96:29–35

    Article  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA, Kanellis AK (1994) Regulation of glutamate dehydrogenase and glutamine synthetase in avocado fruit during development and ripening. Plant Physiol 106:217–222

    PubMed  CAS  Google Scholar 

  • Magalhaes JR, Ju GC, Rich PJ, Rhodes D (1990) Kinetics of nitrogen-15-labelled ammonium ion assimilation in Zea mays: preliminary studies with a glutamate dehydrogenase (GDH1) null mutant. Plant Physiol 94:647–656

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JR, Huber DM, Tsai CY (1995) Influence of the form of nitrogen on ammonium, amino acids and N-assimilating enzyme activity in maize genotypes. J Plant Nutr 18:747–763

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse C, Valadier M-H, Carrayol E, Reisdorf-Cren M, Hirel B (2002) Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant Cell Environ 25:1451–1462

    Article  CAS  Google Scholar 

  • McCullough H (1967) The determination of ammonia in whole blood by a direct colormetric method. Clin Chim Acta 17:297–304

    Article  PubMed  CAS  Google Scholar 

  • McDaniel CN, Hartnett LK, Sangrey KA (1996) Regulation of node number in day-neutral Nicotiana tabacum: a factor in plant size. Plant J 9:55–61

    Article  Google Scholar 

  • Melo-Oliveira R, Oliveira IC, Coruzzi GM (1996) Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Nat Acad Sci USA 93:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  PubMed  CAS  Google Scholar 

  • Morino K, Olsen OA, Shimamoto K (1999) Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J 17:275–285

    Article  PubMed  CAS  Google Scholar 

  • Oliver MJ, Ferguson DL, Burke JJ, Velten J (1993) Inhibition of tobacco NADH-hydroxypyruvate reductase by expression of a heterologous antisense RNA derived from a cucumber cDNA: implications for the mechanism of action of antisense RNAs. Mol Gen Genet 239:425–434

    Article  PubMed  CAS  Google Scholar 

  • Paczek V, Dubois F, Sangwan R, Morot-Gaudry J-F, Roubelakis-Angelakis KA, Hirel B (2002) Cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase in grapes gives new insights on the regulation of C and N metabolism. Planta 216:245–254

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Song HW (2004) The enzymes and control of eukaryotic mRNA turnover. Nature Struct Mol Biol 11:121–127

    Article  CAS  Google Scholar 

  • Pavesi A, Ficarelli A, Tassi F, Restivo FM (2000) Cloning of two glutamate dehydrogenase cDNAs from Asparagus officinalis: sequence analysis and evolutionary implications. Genome 43:306–316

    PubMed  CAS  Google Scholar 

  • Pryor A (1990) A maize glutamic dehydrogenase null mutant is cold temperature sensitive. Maydica 35:367–372

    Google Scholar 

  • Purnell MP, Stewart GR, Botella JR (1997) Cloning and characterisation of a glutamate dehydrogenase cDNA from tomato (Lycopersicon esculentum L.). Gene 186:249–254

    Article  PubMed  CAS  Google Scholar 

  • Re EB, Jones D, Learned RM (1995) Co-expression of native and introduced gene reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J 7:771–784

    Article  PubMed  CAS  Google Scholar 

  • Restivo FM (2004) Molecular cloning of glutamate dehydrogenase genes of Nicotiana plumbaginifolia: structure analysis and regulation of their expression by physiological and stress conditions. Plant Sci 166:971–982

    Article  CAS  Google Scholar 

  • Rhodes D, Brunk OG, Magalhaes JR (1989) Assimilation of ammonium by glutamate dehydrogenase? In: Poulten TE, Romeo JT, Conn EE (eds) Recent advances in phytochemistry. Plenum Press, New York, pp 191–226

    Google Scholar 

  • Riedel J, Tischner R, Mäck G (2001) The chloroplastic glutamine synthetase (GS2) of tobacco is phosphorylated and associated with 14–3-3 proteins inside the chloroplast. Planta 213:396–401

    Article  PubMed  CAS  Google Scholar 

  • Rosenlund B (1990) Time saving method for the reversed-phase high-performance liquid chromatography of phenylthiocarbamylamino acid derivatives of free amino acids in plasma. Biomed App 529:258–262

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sakakibara H, Fujii K, Sugiyama T (1995) Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol 36:789–797

    PubMed  CAS  Google Scholar 

  • Schoof H, Zaccaria P, Gundlach H, Lemcke K, Rudd S, Kolesov G, Arnold R, Mewes HW, Mayer KF (2002) MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucl Acids Res 30:91–93

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Taxonomic structure. In: Kennedy D, Park RB (eds) Numerical taxonomy. W.H. Freeman, San Francisco, pp 230–234

    Google Scholar 

  • Stewart GR, Shatilov VR, Turnbull MH, Robinson SA, Goodall R (1995) Evidence that glutamate dehydrogenase plays a role in the oxidative deamination of glutamate in seedlings of Zea mays. Aust J Plant Physiol 22:805–809

    Article  CAS  Google Scholar 

  • Syntichaki KM, Loulakakis KA, Roubelakis-Angelakis KA (1996) The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene 168:87–92

    Article  PubMed  CAS  Google Scholar 

  • Temple SJ, Knight TJ, Unkefer PJ, Sengupta-Gopalan C (1993) Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: molecular and biochemical analysis. Mol Gen Genet 238:315–325

    Article  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Turano FJ, Thakkar SS, Fang T, Weisemann JM (1997) Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol 113:1329–1341

    Article  PubMed  CAS  Google Scholar 

  • Vasanits A, Molnar-Perl L (1999) Temperature, eluent flow rate and column effects on the retention and quantitation properties of phenylthiocarbamyl derivatives of amino acids in reverse-phase high-performance liquid chromatography. J Chromatogr A 832:109–122

    Article  PubMed  CAS  Google Scholar 

  • Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L (2002) Gramene: a resource for comparative grass genomics. Nucl Acids Res 30:103–105

    Article  PubMed  CAS  Google Scholar 

  • Yamada K et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andrew Fletcher for help with amino acid analysis, Jo Stringer for assistance with statistical analyses, and Scott Hermann and Agnelo Furtado for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Botella.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00425-007-0481-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purnell, M.P., Skopelitis, D.S., Roubelakis-Angelakis, K.A. et al. Modulation of higher-plant NAD(H)-dependent glutamate dehydrogenase activity in transgenic tobacco via alteration of beta subunit levels. Planta 222, 167–180 (2005). https://doi.org/10.1007/s00425-005-1510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1510-z

Keywords

Navigation