Skip to main content
Log in

Phosphorylation and subsequent interaction with 14-3-3 proteins regulate plastid glutamine synthetase in Medicago truncatula

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In this report we demonstrate that plastid glutamine synthetase of Medicago truncatula (MtGS2) is regulated by phosphorylation and 14-3-3 interaction. To investigate regulatory aspects of GS2 phosphorylation, we have produced non-phosphorylated GS2 proteins by expressing the plant cDNA in E. coli and performed in vitro phosphorylation assays. The recombinant isoenzyme was phosphorylated by calcium dependent kinase(s) present in leaves, roots and nodules. Using an (His)6-tagged 14-3-3 protein column affinity purification method, we demonstrate that phosphorylated GS2 interacts with 14-3-3 proteins and that this interaction leads to selective proteolysis of the plastid located isoform, resulting in inactivation of the isoenzyme. By site directed mutagenesis we were able to identify a GS2 phosphorylation site (Ser97) crucial for the interaction with 14-3-3s. Phosphorylation of this target residue can be functionally mimicked by replacing Ser97 by Asp, indicating that the introduction of a negative charge contributes to the interaction with 14-3-3 proteins and subsequent specific proteolysis. Furthermore, we document that plant extracts contain protease activity that cleaves the GS2 protein only when it is bound to 14-3-3 proteins following either phosphorylation or mimicking of phosphorylation by Ser97Asp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GS:

glutamine synthetase

GS2:

plastid GS

NR:

nitrate reductase

Ni-NTA:

nickel-nitrilotriacetic acid

6x his-tag:

six histidine tag

References

  • Adam Z (1996) Protein stability and degradation in chloroplasts. Plant Mol Biol. 32: 773–83

    Article  PubMed  CAS  Google Scholar 

  • Callis J (1995) Regulation of protein degradation. Plant Cell 7: 845–857

    Article  PubMed  CAS  Google Scholar 

  • Carvalho H, Cullimore JV (2003) Regulation of glutamine synthetase isoenzymes and genes in the model legume Medicago truncatula. In: Pandalai SG (ed) Recent research developments in plant molecular biology, vol 1, part 1. Research Signpost Publishers.Trivandrum, pp. 157–175

  • Cock JM, Brock IW, Watson AT, Swarup R, Morby AP, Cullimore JV (1991) Regulation of glutamine synthetase genes in leaves of Phaseolus vulgaris. Plant Mol Biol 17:761–771

    Article  PubMed  CAS  Google Scholar 

  • Cock JM, Hermon P, Cullimore JV (1992) Characterization of a gene encoding the plastid-located glutamine synthetase of Phaseolus vulgaris: regulation of β–glucuronidase gene fusions in transgenic tobacco. Plant Mol Biol 18: 1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Cotelle V, Meek SEM, Provan F, Milne FC, Morrice N, Mackintosh C (2000) 14–3-3s regulate cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J 19:2869–2876

    Article  PubMed  CAS  Google Scholar 

  • Cullimore JV, Miflin BJ (1984) Immunological studies on glutamine synthetase using antisera raised to the two plant forms of the enzyme from Phaseolus root nodules. J Exp Bot 35:581–587

    Article  CAS  Google Scholar 

  • Cullimore JV, Sims AP (1980) An association between photorespiration and protein catabolism: studies in Chlamydomonas. Planta 150:392–396

    Article  CAS  Google Scholar 

  • Dubois F, Brugiere N, Sangwan RS, Hirel B (1996) Localization of tobacco citosolic glutamine synthetase enzymes and corresponding transcripts shows organ and cell-specific patterns of protein synthesis and gene expression. Plant Mol Biol 31:803–817

    Article  PubMed  CAS  Google Scholar 

  • Finnemann J, Schjoerring JK (2000) Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14–3-3 protein interaction. Plant J 24:171–181

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Cullimore JV (1989) The molecular biology of glutamine synthetase in higher plants. In: Miflin B (ed) Oxford Survey Plant Mol Cell Biol, vol 6. Oxford University Press, pp 247–296

  • Forde BG, Day HM, Turton JF, Shen W-J, Cullimore JV, Oliver JE (1989) Two glutamine synthetases genes from Phaseolus vulgaris L. display contrasting developmental and special patterns of expression in transgenic Lotus corniculatus plants. Plant Cell 1:391–401

    Article  PubMed  CAS  Google Scholar 

  • Frohlich V, Fischer A, Ochs G, Wild A, Feller U (1994) Proteolytic inactivation of glutamine synthetase in extracts from wheat leaves: effects of pH, inorganic ions and metabolites. Aust J Plant Physiol 21:303–310

    Google Scholar 

  • Hardin SC, Huber SC (2004) Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. Plant Physiol Biochem 42:197–208

    Article  PubMed  CAS  Google Scholar 

  • Hardin SC, Tang G-Q, Scholz A, Holtgraewe D, Winter H, Huber SC (2003) Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J 35:588–603

    Article  PubMed  CAS  Google Scholar 

  • Hoelzle I, Finner JJ, McMullen MD, Streeter JG (1992) Induction of glutamine synthetase activity in nonnodulated roots of Glicine max, Phaseolus vulgaris and Pisum sativum. Plant Physiol 100:525–528

    Article  PubMed  CAS  Google Scholar 

  • Huber SC, Bachmann M, Huber JL (1996) Post-translational regulation of nitrate reductase activity: a role for Ca2+ and 14–3-3 proteins. Trends Plant Sci 1:432–438

    Article  Google Scholar 

  • Journet EP, van Tuinen D, Gouzy J, Carreau V, Farmer MJ, Niebel A, Schiex T, Crespeau H, Jaillon O, Chatagnier O, Godiard L, Gianinazzi-Pearson V, Kahn D, Gamas P (2002) Exploring the root symbiotic programs of the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 30: 5579–5592

    Article  PubMed  Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai C-B, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and potentially important side reaction. J Exp Bot vol 53:875–882

    Article  CAS  Google Scholar 

  • Lea PJ, Robinson SA, Stewart GR (1990) The enzymology and metabolism of glutamine, glutamate and asparagine. In: Miflin BJ, Lea PJ (eds) The Biochemistry of Plants, vol 16. Academic Press, New York, pp 121–160

  • Li MG, Villemur R, Hussey PJ, Silflow CD, Gantt JS, Snustad DP (1993) Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol 23:401–407

    Article  PubMed  CAS  Google Scholar 

  • Lullien V, Barker DG, da Lajudie P, Huguet T (1987) Plant gene expression in effective and ineffective root nodules of alfalfa (Medicago sativa). Plant Mol Biol 9:469–478

    Article  CAS  Google Scholar 

  • Mackintosh C, Meek SE (2001) Regulation of plant NR activity by reversible phosphorylation, 14–3-3 proteins and proteolysis. Cell Mol Life Sci 58:205–214

    Article  PubMed  CAS  Google Scholar 

  • Man H-M, Kaiser WM (2001) Increased glutamine synthetase activity and changes in amino acid pools in leaves treated with 5-aminoimidazole-4-carboxiamide ribonucleoside (AICAR). Physiol Plant 111:291–296

    Article  PubMed  CAS  Google Scholar 

  • Melo PM, Lima LM, Santos IM, Carvalho HG, Cullimore JV (2003) Expression of the plastid-located glutamine synthetase of Medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiol 132:390–399

    Article  PubMed  CAS  Google Scholar 

  • Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, Meek S, Deiting U, Stitt M, Scarabel M, Aitken A, Mackintosh C (1999) Phosphorylation-dependent interactions between enzymes of plant metabolism and 14–3-3 proteins. Plant J 18:1–12

    Article  PubMed  CAS  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14–3-3 with signalling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897

    Article  PubMed  CAS  Google Scholar 

  • Oliveira IC, Lam H-M, Coschigano K, Melo-Oliveira R, Coruzzi G (1997) Molecular-genetic dissection of ammonium assimilation in Arabidopsis thaliana. Plant Physiol Biochem 35:185–198

    Google Scholar 

  • Ortega JL, Roche D, Sengupta-Gopalan C (1999) Oxidative turnover of soybean root glutamine synthetase. In vitro and in vivo studies. Plant Physiol 119:1483–1495

    Article  PubMed  CAS  Google Scholar 

  • Ortega JL, Temple SJ, Sengupta-Gopolan C (2001) Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol 126:109–121

    Article  PubMed  CAS  Google Scholar 

  • Ortega JL, Temple SJ Bagga S, Ghoshroy S, Sengupta-Gopolan C (2004) Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively overexpressing a cytosolic glutamine synthetase gene. Planta 219:807–818

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Carrillo N, Valle EM (1999) The role of photosynthetic electron transport in the oxidative degradation of chloroplastic glutamine synthetase. Plant Physiol. 121: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Pozuelo M, Mackintosh C, Galvan A, Fernandez E (2001) Cytosolic glutamine synthetase and not nitrate reductase from the green alga Chlamydomonas reinhardtii is phosphorylated and binds 14–3-3 proteins. Planta 212:264–269

    Article  PubMed  CAS  Google Scholar 

  • Riedel J, Tischner R, Mäck G (2001) The chloroplastic glutamine synthetase (GS-2) of tobacco is phosphorylated and associated with 14–3-3 proteins inside the chloroplast. Planta 213:396–401

    Article  PubMed  CAS  Google Scholar 

  • Roche D, Temple SJ, Sengupta-Gopalan C (1993) Two classes of differentially regulated glutamine synthetase genes are expressed in the soybean nodule: a nodule-specific class and a constitutively expressed class. Plant Mol Biol 22:971–983

    Article  PubMed  CAS  Google Scholar 

  • Roulin S, Feller U (1997) Light-induced proteolysis of stromal proteins in pea (Pisum sativum L.) chloroplasts: requirement for intact organelles. Plant Sci 128:31–41

    Article  CAS  Google Scholar 

  • Sakakibara H, Kawabata S, Takahashi H, Hase T, Sugiyama T (1992) Molecular cloning of the family of glutamine synthetase genes from maize: expression of genes for glutamine synthetase and ferredoxin-dependent glutamate synthase in photosynthetic and non-photosynthetic tissues. Plant Cell Physiol 33:49–58

    CAS  Google Scholar 

  • Streit L, Feller U (1983) Chandging activities and different resistence to proteolytic activity of two forms of glutamine synthetase in wheat leaves during senescence. Physiol Vég 21:103–108

    CAS  Google Scholar 

  • Sukanya R, Li M-G, Snustad DP (1994) Root- and shoot-specific responses of individual glutamine synthetase genes of maize to nitrate and ammonium. Plant Mol Biol 26:1935–1946

    Article  PubMed  CAS  Google Scholar 

  • Tang G-Q, Hardin SC, Dewey R, Huber SC (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J 34:77–93

    Article  PubMed  CAS  Google Scholar 

  • Temple SJ, Heard J, Ganter G, Dunn K, Sengupta-Gopalan C (1995) Characterization of a nodule-enhanced glutamine synthetase from alfalfa: nucleotide sequence, in situ localization and transcript analysis. Mol Plant-Microbe Interact 8:218–227

    PubMed  CAS  Google Scholar 

  • Temple SJ, Heard J, Kunjibettu S, Roche D, Sengupta-Gopalan C (1996) Total glutamine synthetase activity during soybean nodule development is controlled at the level of transcription and holoprotein turnover. Plant Physiol 112:1723–1733

    PubMed  CAS  Google Scholar 

  • Temple SJ, Bagga S, Sengupta-Gopolan C (1998) Down-regulation of specific members of the glutamine synthetase gene family by antisense RNA technology. Plant Mol Biol 37:535–547

    Article  PubMed  CAS  Google Scholar 

  • Thoenen M, Feller U (1998) Degradation of glutamine synthetase in intact chloroplasts isolated from pea (Pisum sativum) leaves. Aust J Plant Physiol 25:279–286

    Article  CAS  Google Scholar 

  • Toroser D, Athwal GS, Huber SC (1998) Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14–3-3 proteins. FEBS Lett 435:110–114

    Article  PubMed  CAS  Google Scholar 

  • Walker EL, Coruzzi GM (1989) Developmental regulated expression of the gene family for cytosolic glutamine synthetase in Pisum sativum. Plant Physiol 91:702–708

    PubMed  CAS  Google Scholar 

  • Weiner H, Kaiser WM (1999) 14–3-3 proteins control proteolysis of nitrate reductase in spinach leaves. FEBS Lett 455:75–78

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Inagaki N, Satoh K (2001) Overexpression and characterization of carboxyl-terminal processing protease for precursor D1 protein: regulation of enzyme-substrate interaction by molecular environments. J Biol Chem 276(10): 7518–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Carol Mackintosh (MRC unit, University of Dundee, UK) for providing anti-14-3-3 antibodies. We are also extremely grateful to Michel Rossignol and Giselle Borderie (IFR40, Toulouse, France) for expert assistance in 2D electrophoresis. We are also grateful to Jorge Azevedo and Pedro Pereira (IBMC, Porto, Portugal) for helpful discussions. This work was supported by the Fundação para a Ciência e Tecnologia (Project no. POC/PI/41433/2001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, L., Seabra, A., Melo, P. et al. Phosphorylation and subsequent interaction with 14-3-3 proteins regulate plastid glutamine synthetase in Medicago truncatula . Planta 223, 558–567 (2006). https://doi.org/10.1007/s00425-005-0097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0097-8

Keywords

Navigation