Skip to main content

Advertisement

Log in

Lipid rafts in plants

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

About two decades ago a provocative hypothesis evolved suggesting that the plasma membrane (PM) of mammalian and probably other eukaryotic cells constitutes a mosaic of patches comprising particular molecular compositions. These scattered lipid bilayer microdomains are supposedly enriched in sterols as well as sphingolipids and depleted in unsaturated phospholipids. In addition, the PM microdomains are proposed to host glycosyl-phosphatidylinositol-anchored polypeptides and a subset of integral and peripheral cell surface proteins while excluding others. Though the actual in vivo existence of such “lipid rafts” remains controversial, a range of fundamental biological functions has been put forward for these PM microenvironments. A variety of recent studies provide preliminary evidence that lipid rafts may also occur in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DRM:

Detergent-resistant membrane

FRET:

Fluorescence resonance energy transfer (a technique to determine protein-protein interactions via radiation-less energy transfer between fluorophore-tagged polypeptides)

FRAP:

Fluorescence recovery after photobleaching (a technique to study lateral protein movement)

GPI:

Glycosylphosphatidylinositol

PM:

Plasma membrane

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

References

  • Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953

    Article  PubMed  CAS  Google Scholar 

  • Alfsen A, Iniguez P, Bouguyon E, Bomsel M (2001) Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J Immunol 166:6257–6265

    PubMed  CAS  Google Scholar 

  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15:5118–5129

    Article  PubMed  CAS  Google Scholar 

  • Ayllon V, Fleischer A, Cayla X, Garcia A, Rebollo A (2002) Segregation of bad from lipid rafts is implicated in the induction of apoptosis. J Immunol 168:3387–3393

    PubMed  CAS  Google Scholar 

  • Bagnat M, Simons K (2002) Cell surface polarization during yeast mating. Proc Natl Acad Sci USA 99:14183–14188

    Article  PubMed  CAS  Google Scholar 

  • Bariola PA, Retelska D, Stasiak A, Kammerer RA, Fleming A, Hijri M, Franks S, Farmer EE (2004) Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants. Plant Mol Biol 55:579–594

    Article  PubMed  CAS  Google Scholar 

  • Bérczi A, Horvath G (2003) Lipid rafts in the plant plasma membrane? Acta Biol Szeged 47:7–10

    Google Scholar 

  • Bérczi A, Lüthje S, Asard H (2001) b-Type cytochromes in plasma membranes of Phaseolus vulgaris hypocotyls, Arabidopsis thaliana leaves, and Zea mays roots. Protoplasma 217:50–55

    Article  PubMed  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102:3135–3140

    Article  PubMed  CAS  Google Scholar 

  • Blackwell HE, Zhao YD (2003) Chemical genetic approaches to plant biology. Plant Physiol 133:448–455

    Article  PubMed  CAS  Google Scholar 

  • Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, MacAskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell-surface. Cell 68:533–544

    Article  PubMed  CAS  Google Scholar 

  • Castanho M, Coutinho A, Prieto MJE (1992) Absorption and fluorescence-spectra of polyene antibiotics in the presence of cholesterol. J Biol Chem 267:204–209

    PubMed  CAS  Google Scholar 

  • Chamberlain LH, Burgoyne RD, Gould GW (2001) SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 98:5619–5624

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A (1990) Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-Yl)-labeled lipids—fluorescent probes of biological and model membranes. Chem Phys Lipids 53:1–15

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2002) Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14:1995–2000

    Article  PubMed  CAS  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Somerville CR (2005) Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death. BMC Plant Biology 5:4. DOI :10.1186/1471–2229–5-4

  • del Pozo MA, Alderson NB, Kiosses WB, Chiang HH, Anderson RGW, Schwartz MA (2004) Integrins regulate Rac targeting by internalization of membrane domains. Science 303:839–842

    Article  PubMed  CAS  Google Scholar 

  • Dunn TM, Lynch DV, Michaelson LV, Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot 93:483–497

    Article  PubMed  CAS  Google Scholar 

  • Elortza F, Nühse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Epand RM (2004) Do proteins facilitate the formation of cholesterol-rich domains? Biochim Biophys Acta Biomembranes 1666:227–238

    Article  CAS  Google Scholar 

  • Falk J, Thoumine O, Dequidt C, Choquet D, Faivre-Sarrailh C (2004) NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts. Mol Biol Cell 15:4695–4709

    Article  PubMed  CAS  Google Scholar 

  • Füllekrug J, Simons K (2004) Lipid rafts and apical membrane traffic. Gastroenteropancreatic neuroendocrine tumor disease: molecular and cell biological aspects. Ann N Y Acad Sci 1014:164–169

    Article  PubMed  CAS  Google Scholar 

  • Gajate C, Mollinedo F (2005) Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280:11641–11647

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Cayla X, Fleischer A, Guergnon J, Canas FAF, Rebollo MP, Roncal F, Rebollo A (2003) Rafts: a simple way to control apoptosis by subcellular redistribution. Biochimie 85:727–731

    Article  PubMed  CAS  Google Scholar 

  • Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650

    Article  PubMed  CAS  Google Scholar 

  • Gekara NO, Weiss S (2004) Lipid rafts clustering and signalling by listeriolysin O. Biochem Soc Transact 32:712–714

    Article  CAS  Google Scholar 

  • Glebov OO, Nichols BJ (2004) Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 6:238–243

    Article  PubMed  CAS  Google Scholar 

  • Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Guyader M, Kiyokawa E, Abrami L, Turelli P, Trono D (2002) Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J Virol 76:10356–10364

    Article  PubMed  CAS  Google Scholar 

  • Hammond AT, Heberle FA, Baumgart T, Holowka D, Baird B, Feigenson GW (2005) Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci USA 102:6320–6325

    Article  PubMed  CAS  Google Scholar 

  • Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175

    Article  Google Scholar 

  • Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701

    Article  PubMed  CAS  Google Scholar 

  • Henderson RA, Edwardson JM, Geisse NA, Saslowsky DE (2004) Lipid rafts: feeling is believing. News Physiol Sci 19:39–43

    Article  PubMed  CAS  Google Scholar 

  • Hoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B, Din NU (2000) Signaling through sphingolipid microdomains of the plasma membrane: The concept of signaling platform. Glycoconjugate J 17:191–197

    Article  CAS  Google Scholar 

  • Kasahara K, Watanabe K, Kozutsumi Y, Oohira A, Yamamoto T, Sanai Y (2002) Association of GPI-anchored protein TAG-1 with Src-family kinase Lyn in lipid rafts of cerebellar granule cells. Neurochem Res 27:823–829

    Article  PubMed  CAS  Google Scholar 

  • Kuerschner L, Ejsing CS, Ekroos K, Shevchenko A, Anderson KI, Thiele C (2005) Polyene-lipids: a novel tool to image lipids. Nat Methods 2:39–45

    Article  PubMed  CAS  Google Scholar 

  • Lafont F, Abrami L, van der Goot FG (2004) Bacterial subversion of lipid rafts. Curr Opin Microbiol 7:4–10

    Article  PubMed  CAS  Google Scholar 

  • Laude AJ, Prior IA (2004) Plasma membrane microdomains: organization, function and trafficking. Mol Membrane Biol 21:193–205

    Article  CAS  Google Scholar 

  • London E, Brown DA (2000) Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta Biomembranes 1508:182–195

    Article  CAS  Google Scholar 

  • Martin SW, Konopka JB (2004) Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryotic Cell 3:675–684

    Article  PubMed  CAS  Google Scholar 

  • Martin SW, Glover BJ, Davies JM (2005) Lipid microdomains—plant membranes get organized. Trends Plant Sci 10:263–265

    Article  PubMed  CAS  Google Scholar 

  • van Meer G, Liskamp RMJ (2005) Brilliant lipids. Nat Methods 2:14–15

    Article  PubMed  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells—purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  PubMed  CAS  Google Scholar 

  • Munro S (2003) Lipid rafts: elusive or illusive? Cell 115: 377–388

    Article  PubMed  CAS  Google Scholar 

  • Nichols BJ (2003) GM1-containing lipid rafts are depleted within clathrin-coated pits. Curr Biol 13:686–690

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane”. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  • Oliferenko S, Paiha K, Harder T, Gerke V, Schwarzler C, Schwarz H, Beug H, Gunthert U, Huber LA (1999) Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146:843–854

    Article  PubMed  CAS  Google Scholar 

  • Opekarova M, Tanner W (2003) Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochim Biophys Acta Biomembranes 1610:11–22

    Article  CAS  Google Scholar 

  • Pagano RE, Martin OC, Kang HC, Haugland RP (1991) A novel fluorescent ceramide analog for studying membrane traffic in animal-cells—accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol 113:1267–1279

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R (2005) Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem Soc Transact 33:389–392

    Article  CAS  Google Scholar 

  • Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738

    Article  PubMed  CAS  Google Scholar 

  • Peskan T, Westermann M, Oelmuller R (2000) Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants. Eur J Biochem 267:6989–6995

    Article  PubMed  CAS  Google Scholar 

  • Peterlin BM, Trono D (2003) Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat Rev Immunol 3:97–107

    Article  PubMed  CAS  Google Scholar 

  • Pierce SK (2004) To cluster or not to cluster: FRETting over rafts. Nat Cell Biol 6:180–181

    Article  PubMed  CAS  Google Scholar 

  • Pralle A, Keller P, Florin EL, Simons K, Horber JKH (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Rosenberger CM, Brumell JH, Finlay BB (2000) Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10:R823–R825

    Article  PubMed  CAS  Google Scholar 

  • Salaün C, James DJ, Chamberlain LH (2004) Lipid rafts and the regulation of exocytosis. Traffic 5:255–264

    Article  PubMed  Google Scholar 

  • Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97:1141–1143

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Toellner D, Wang K, Assi LK, Webb PR, Craddock RM, Salmon M, Lord JM (2004) Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochem Soc Transact 32:679–681

    Article  CAS  Google Scholar 

  • Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Gene Dev 15:1115–1127

    Article  PubMed  CAS  Google Scholar 

  • Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins – GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91:12130–12134

    Article  PubMed  CAS  Google Scholar 

  • Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 14:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Shahollari B, Peskan-Berghofer T, Oelmuller R (2004) Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiol Plantarum 122:397–403

    Article  CAS  Google Scholar 

  • Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  PubMed  CAS  Google Scholar 

  • Shin JS, Abraham SN (2001) Caveolae as portals of entry for microbes. Microbes Infect 3:755–761

    Article  PubMed  CAS  Google Scholar 

  • Shin JS, Gao ZM, Abraham SN (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289:785–788

    Article  PubMed  CAS  Google Scholar 

  • Shvartsman DE, Kotler M, Tall RD, Roth MG, Henis YI (2003) Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts. J Cell Biol 163:879–888

    Article  PubMed  CAS  Google Scholar 

  • Silvius JR (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta-Biomembranes 1610:174–183

    Article  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  PubMed  CAS  Google Scholar 

  • Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard P (2002) A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301:212–225

    Article  PubMed  CAS  Google Scholar 

  • Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14:1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta-Mol Cell Biol Lipids 1632:1–15

    Article  CAS  Google Scholar 

  • Takeda T, Kawate T, Chang F (2004) Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast. Nat Cell Biol 6:1142–1144

    Article  PubMed  CAS  Google Scholar 

  • Tanimura N, Nagafuku M, Minaki Y, Umeda Y, Hayashi F, Sakakura J, Kato A, Liddicoat DR, Ogata M, Hamaoka T, Kosugi A (2003) Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation. J Cell Biol 160:125–135

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Brandenburg K, Kusumoto S, Fukase K, Mackie A, Seydel U, Triantafilou K (2004) Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochem J 381:527–536

    Article  PubMed  CAS  Google Scholar 

  • Twain M (1885) Adventures of Huckleberry Finn (Tom Sawyer’s comrade). Charles L. Webster and Co., New York

    Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  PubMed  CAS  Google Scholar 

  • Vermeer JEM, Van Munster EB, Vischer NO, Gadella TWJ (2004) Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy. J Microsc 214:190–200

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  • Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES (2003) Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424:456–461

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Huang DY, Huong SM, Huang ES (2005) Integrin αvβ3 is a coreceptor for human cytomegalovirus. Nat Med 11:515–521

    Article  PubMed  CAS  Google Scholar 

  • Wickström SA, Alitalo K, Keski-Oja J (2003) Endostatin associates with lipid rafts and induces reorganization of the actin cytoskeleton via down-regulation of RhoA activity. J Biol Chem 278:37895–37901

    Article  PubMed  Google Scholar 

  • Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625

    Article  PubMed  CAS  Google Scholar 

  • Wooldridge KG, Williams PH, Ketley JM (1996) Host signal transduction and endocytosis of Campylobacter jejuni. Microb Pathog 21:299–305

    Article  PubMed  CAS  Google Scholar 

  • Xia FZ, Gao XD, Kwan E, Lam PPL, Chan LL, Sy KY, Sheu L, Wheeler MB, Gaisano HY, Tsushima RG (2004) Disruption of pancreatic β-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 279:24685–24691

    Article  PubMed  CAS  Google Scholar 

  • Xu XL, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J Biol Chem 276:33540–33546

    Article  PubMed  CAS  Google Scholar 

  • Zheng HQ, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Due to space limitations and the comprehensive literature devoted to the analysis of lipid rafts we were urged to select representative studies as references in many instances. We apologize to all authors whose excellent papers could not be cited in this review. We thank Ralph Hückelhoven for critically reading the manuscript. Work in the Lab of R.P. is supported by grants of the Max-Planck society and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Panstruga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, R.A., Panstruga, R. Lipid rafts in plants. Planta 223, 5–19 (2005). https://doi.org/10.1007/s00425-005-0096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0096-9

Keywords

Navigation