Skip to main content
Log in

Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Two full-length cDNA sequences homologous to caleosin, a seed-storage oil-body protein from sesame, were identified from a series of barley grain development cDNA libraries and further characterised. The cDNAs, subsequently termed HvClo1 and HvClo2, encode proteins of 34 kDa and 28 kDa, respectively. Real-time RT-PCR indicated that HvClo1 is expressed abundantly during the later stages of embryogenesis and is seed-specific, accumulating in the scutellum of mature embryos. HvClo2 is expressed mainly in the endosperm tissues of the developing grain. We show that HvClo1 and HvClo2 are paralogs that co-segregate on barley chromosome 2HL. Transient expression of HvClo1 in lipid storage and non-storage cells of barley using biolistic particle bombardment indicates that caleosins have different subcellular locations from the structural oil-body protein oleosin, and by inference participate in different sorting pathways. We observe that caleosin sorts via small vesicles, suggesting a likely association with lipid trafficking, membrane expansion and oil-body biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

DPA:

Days post-anthesis

GFP:

Green fluorescent protein

RFP:

Red fluorescent protein

SNP:

Single-nucleotide polymorphism

TAG:

Triacylglyceride

References

  • Aalen RB (1995) The transcripts encoding two oleosin isoforms are both present in the aleurone and in the embryo of barley (Hordeum vulgare L.) seeds. Plant Mol Biol 28:583–588

    Google Scholar 

  • Aalen RB, Opsahl-Ferstad HG, Linnestad C, Olsen OA (1994) Transcripts encoding an oleosin and a dormancy-related protein are present in both the aleurone layer and the embryo of developing barley (Hordeum vulgare L.) seeds. Plant J 5:385–396

    Google Scholar 

  • Brindley D (1985) Biochemistry of lipids and membranes. Benjamin/Cummings, Menlo Park, pp 213–241

    Google Scholar 

  • Butler K, Zorn AM, Gurdon JB (2001) Nonradioactive in situ hybridization to xenopus tissue sections. Methods 23:303–312

    Article  Google Scholar 

  • Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Hayes PM (1989) A comparison of Hordeum bulbosum-mediated haploid production efficiency in barley using in vitro floret and tiller culture. Theor Appl Genet 77:701–704

    Google Scholar 

  • Chen ECF, Tai SSK, Peng CC, Tzen JTC (1998) Identification of three novel unique proteins in seed oil bodies of sesame. Plant Cell Physiol 39:935–941

    Google Scholar 

  • Chen JC, Tsai CC, Tzen JT (1999) Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol 40:1079–1086

    Google Scholar 

  • Daines RJ (1990) DeKalb researchers improve maize transformation rates. Biolistic Particle Deliv Syst Newsl 1:1–4

    Google Scholar 

  • Duffus CM, Cochrane MP (1992) Grain structure and composition. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 291–318

    Google Scholar 

  • Frandsen G, Muller-Uri F, Nielsen M, Mundy J, Skriver K (1996) Novel plant Ca2+-binding protein expressed in response to abscisic acid and osmotic stress. J Biol Chem 271:343–348

    Article  Google Scholar 

  • Frandsen GI, Mundy J, Tzen JT (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112:301–307

    Article  Google Scholar 

  • Hernandez-Pinzon I, Patel K, Murphy DJ (2001) The Brassica napus calcium-binding protein, caleosin, has distinct endoplasmic reticulum- and lipid body-associated isoforms. Plant Physiol Biochem 39:615–622

    Google Scholar 

  • Huang AH (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Tzen JT, Kridl JC, Radke SE, Huang AH (1991) Maize oleosin is correctly targeted to seed oil bodies in Brassica napus transformed with the maize oleosin gene. Proc Natl Acad Sci USA 88:6181–6185

    Google Scholar 

  • Lin LJ, Tai SS, Peng CC, Tzen JT (2002) Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiol 128:1200–1211

    Google Scholar 

  • Miquel M, Browse J (1995) Seed development and germination. Dekker, New York, pp 169–193

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  Google Scholar 

  • Naested H, Frandsen GI, Jauh GY, Hernandez-Pinzon I, Nielsen HB, Murphy DJ, Rogers JC, Mundy J (2000) Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol 44:463–476

    Google Scholar 

  • Napier JA, Stobart AK, Shewry PR (1996) The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol Biol 31:945–956

    Google Scholar 

  • Nielsen K, Olsen O, Oliver R (1999) A transient expression system to assay putative antifungal genes on powdery mildew infected barley leaves. Physiol Mol Plant Pathol 54:1–12

    Google Scholar 

  • Nuccio ML, Thomas TL (1999) ATS1 and ATS3: two novel embryo-specific genes in Arabidopsis thaliana. Plant Mol Biol 39:1153–1163

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Tzen JT, Huang AH (1992) Surface structure and properties of plant seed oil bodies. J Cell Biol 117:327–335

    Article  Google Scholar 

  • Tzen JT, Lie GC, Huang AH (1992) Characterization of the charged components and their topology on the surface of plant seed oil bodies. J Biol Chem 267:15626–15634

    Google Scholar 

  • Wahlroos T, Soukka J, Denesyuk A, Wahlroos R, Korpela T, Kilby NJ (2003) Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells. Genesis 35:125–132

    Article  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    CAS  PubMed  Google Scholar 

  • Wang SM, Huang AH (1987) Biosynthesis of lipase in the scutellum of maize kernel. J Biol Chem 262:2270–2274

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Scottish Executive Environment and Rural Affairs Department. We thank Professor Jason Tzen for kindly providing the anti-sesame caleosin sera, Ms Clare Booth for DNA sequencing, Ms Diane Davidson for demonstrating the transient expression experiment, Dr Christophe Lacomme for suggestions and ideas, Dr Gordon Jamieson for analysing caleosin sequences and Dr Luke Ramsay for genetic mapping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbie Waugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Hedley, P., Cardle, L. et al. Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development. Planta 221, 513–522 (2005). https://doi.org/10.1007/s00425-004-1465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1465-5

Keywords

Navigation