Skip to main content
Log in

Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In Arabidopsis thaliana (L.) Heynh., the cytosolic, patatin-related phospholipase A enzymes comprise a family of ten genes designated AtPLAs thought to be involved in auxin and pathogen signalling [A. Holk et al. (2002) Plant Physiol 130:90–101]. One of these, AtPLA IIA, is investigated here by studying its transcriptional regulation through transgenic Arabidopsis plants containing the AtPLA IIA promoter (PIIA) fused to the β-glucuronidase (GUS) gene. GUS activity appeared in leaves at 10–12 days and became increasingly stronger with age in all leaves. From the same age on, strong GUS activity was visible in the basal stipules of the rosette leaves. PIIA-dependent GUS activity was found in the older parts of the primary root (from 10 days on) and, later in development, in older parts of side roots, and the root cap. No GUS activity was detected in flower organs. PIIA-dependent GUS expression in 12-day-old plants was up-regulated after treatment by salicylic acid, Bion, wounding, 1-aminocyclopropane-1-carboxylic acid (ACC) and jasmonic acid. When transgenic PIIA::uidA plants were grown devoid of iron, 9-day-old plants exhibited increased GUS activity in the leaves and, when devoid of phosphate, 11-day-old plants had increased GUS activity in the roots. In conclusion, this member of the patatin-related phospholipase A gene family showed properties of a defence and iron-stress and phosphate-stress gene, being transcriptionally up-regulated within hours or days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–k
Fig. 2
Fig. 3a–m
Fig. 4a,b
Fig. 5a–d
Fig. 6
Fig. 7a–h

Similar content being viewed by others

Abbreviations

AACOCF 3 :

Arachidonyltrifluoromethylcarbon

ACC :

1-Aminocyclopropane-1-carboxylic acid

β-BODIPY-PC :

2-(4,4-Difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine

bis-BODIPY-PC :

1,2-Bis-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glycero-3-phosphocholine

ETYA :

5,8,11,14-Eicosatetraynoic acid

GUS :

β-Glucuronidase

HELSS :

Tetrahydro-3-(1-naphtalenylnaphthalenyl)-2H-pyran-2-one

JA :

Jasmonic acid

NDGA :

Nordihydroguajaretic acid

PACOCF 3 :

Palmitoyltrifluoromethyl ketone

PIIA :

AtPLA IIA promoter

PLA :

Phospholipase A

SA :

Salicylic acid

References

  • Ackermann EJ, Conde-Fieboes K, Dennis EA (1995) Inhibition of macrophage Ca2+-independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones. J Biol Chem 270:445–450

    CAS  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci III 316:1194–1199

    CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197

    CAS  PubMed  Google Scholar 

  • Berleth T, Mattson J, Hartke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–394

    CAS  PubMed  Google Scholar 

  • Borch K, Bouma TJ, Lynch JP, Brown KM (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Conconi A, Miquel M, Browse JA, Ryan CA (1996) Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol 111:797–803

    CAS  PubMed  Google Scholar 

  • Devadas SK, Enyedi A, Raina R (2002) The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signaling in cell death and defense against pathogens. Plant J 30:467–480

    Article  CAS  PubMed  Google Scholar 

  • Dolferus R (1991) Isolation of DNA and RNA from Arabidopsis thaliana. In: Negruku J, Ghark-Chhetri GB (eds) Bio methods, A laboratory guide for cellular and molecular plant biology. Birkhäuser, Basel, pp 133–152

  • Dhondt S, Gouzerh G, Müller A, Legrand M, Heitz T (2002) Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant J 32:749–762

    Article  CAS  PubMed  Google Scholar 

  • Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eucaryotic lipases. Proc Natl Acad Sci USA 96:3292–3297

    CAS  PubMed  Google Scholar 

  • Feußner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    CAS  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907

    CAS  PubMed  Google Scholar 

  • Holk A, Rietz S, Zahn M, Quader H, Scherer GFE (2002) Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiol 130:90–101

    Article  CAS  PubMed  Google Scholar 

  • Igarashi M, Demura T, Fukuda H (1998) Expression of the Zinnia TED3 promoter in developing tracheary elements of transgenic Arabidopsis. Plant Mol Biol 36:917–927

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–209

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Jirage D, Tootle TL, Reuber L, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 96:13583–13588

    Article  CAS  PubMed  Google Scholar 

  • Jung KM, Kim DK (2000) Purification and characterization of a membrane-associated 48-kilodalton phospholipase A2 in leaves of broad bean. Plant Physiol 123:1057–1067

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Chung YS, Ok SH, Lee SG, Chung WI, Kim IY, Shin JS (1999) Characterization of the full-length sequences of phospholipase A2 induced during flower development. Biochim Biophys Acta 1489:389–392

    Article  CAS  PubMed  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang SQ, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8852

    CAS  PubMed  Google Scholar 

  • Kubigsteltig I, Laudert D, Weiler EW (1999) Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta 208:463–471

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    CAS  PubMed  Google Scholar 

  • Lee S, Suh S, Kim S, Crain RC, Kwak JM, Nam H-G, Lee Y (1997) Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J 12:547–556

    Article  CAS  Google Scholar 

  • Lee HY, Bahn SC, Kang Y-M, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15:1990–2002

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    CAS  PubMed  Google Scholar 

  • Mueller MJ, Brodschelm W, Spannagl E, Zenk M (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90:7490–7494

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Narváez-Vasquez J, Florin-Christensen J, Ryan CA (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260

    PubMed  Google Scholar 

  • Nishimura A, Morita M, Sugino Y (1990) A rapid and highly efficient method for preparation of competent Escherichia coli cells. Nucleic Acids Res 18:6169

    CAS  PubMed  Google Scholar 

  • Passarinho PA, Van Hegel AJ, Fransz PF, de Vries SC (2001) Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212:556–567

    Article  CAS  PubMed  Google Scholar 

  • Paul R (1999) Untersuchungen zur Funktion von Phospholipase A2 und Phospholipase C im Signaltransduktionsweg von Auxin und Pilzelicitor in Petersiliezellkulturen. Dissertation, University of Hannover

  • Paul R, Holk A, Scherer GFE (1998) Fatty acids and lysophospholipids as potential second messengers in auxin action. Rapid activation of phospholipase A2 activity by auxin in suspension-cultured parsley and soybean cells. Plant J 16:601–611

    Article  CAS  Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid independent plant defense pathways. Trends Plant Sci 4:52–58

    PubMed  Google Scholar 

  • Roos W, Dordschbal B, Steighardt J, Hieke M, Weiss D, Laalbach G (1999) A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica. Biochim Biophys Acta 1448:390–402

    Article  CAS  PubMed  Google Scholar 

  • Rosahl S, Schmidt R, Schell J, Willmitzer L (1986) Isolation and characterization of a gene from Solanum tuberosum encoding patatin, the major storage protein of potato tubers. Mol Gen Genet 203:214–220

    CAS  Google Scholar 

  • Rydel TJ, Williams JM, Krieger E, Moshiri F, Stallings WC, Brown SM, Pershing JC, Purcell JP, Alibhai MF (2003) The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a ser-asp catalytic dyad. Biochemistry 42:6696–6708

    Article  CAS  PubMed  Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J Exp Bot 52:11–23

    CAS  PubMed  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    CAS  PubMed  Google Scholar 

  • Scherer GFE (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol Biol 49:357–372

    Article  CAS  PubMed  Google Scholar 

  • Scherer GFE, André B (1989) A rapid response to plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem Biophys Res Commun 163:111–117

    CAS  PubMed  Google Scholar 

  • Scherer GFE, André B (1993) Stimulation of phospholipase A2 by auxin in microsomes from suspension cultured soybean cells is receptor-mediated and influenced by nucleotides. Planta 191:515–523

    CAS  Google Scholar 

  • Scherer GFE, Arnold B (1997) Auxin-induced growth is inhibited by phospholipase A2 inhibitors. Implications for auxin-induced signal transduction. Planta 202:462–469

    Article  CAS  Google Scholar 

  • Scherer GFE, Paul RU, Holk A, Martinec J (2002) Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem Biophys Res Commun 293:766–770

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W, Schikora A (2001) Different pathways are involved in phosphate and iron stress induced alterations of root epidermal cell development. Plant Physiol 125:2078–2084

    CAS  PubMed  Google Scholar 

  • Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122:1109–1118

    CAS  PubMed  Google Scholar 

  • Sowka S, Wagner S, Krebitz M, Arija-Mad-Arif S, Yusof F, Kinaciyan T, Brehler R, Scheiner O, Breiteneder H (1998) cDNA cloning of the 43-kDa latex allergen Hev b7 with sequence similarity to patatins and its expression in the yeast Pichia pastoris. Eur J Biochem 255:213–219

    Article  CAS  PubMed  Google Scholar 

  • Ståhl U, Ek B, Stymne S (1998) Purification and characterization of a low-molecular-weight phospholipase A2 from developing seeds of elm. Plant Physiol 117:197–205

    Article  PubMed  Google Scholar 

  • Street IP, Lin H-K, Laliberté F, Ghomashchi F, Wang Z, Perrier H, Tremblay NM, Huang Z, Weech PK, Gelb MH (1993) Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 32:5935–5940

    CAS  PubMed  Google Scholar 

  • van Haute, Joes H, Warren G, Van Montagu M, Schell J (1983) Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti-Plasmid of Agrobacterium tumefaciens. EMBO J 2:411–417

    PubMed  Google Scholar 

  • van Wees SC, de Swart EA, van Pelt JA, van Loon LC, Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    PubMed  Google Scholar 

  • Viehweger K, Dordschbal B, Roos W (2002) Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxes. Plant Cell 14:1509–1525

    Article  CAS  PubMed  Google Scholar 

  • Wang X (1999) The role of phospholipase D in signaling cascades. Plant Physiol 120:645–651

    Article  CAS  PubMed  Google Scholar 

  • Winstead MV, Balsinde J, Dennis EA (2000) Calcium-independent phospholipase A2: structure and function. Biochim Biophys Acta 1488:28–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Sche 207/9-1), the Bundesministerium für Forschung (50WB0010), and the Deutsche Volkswagen Stiftung [A.Z.51.16-76251-9/97(ZN607)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther F. E. Scherer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rietz, S., Holk, A. & Scherer, G.F.E. Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency. Planta 219, 743–753 (2004). https://doi.org/10.1007/s00425-004-1275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1275-9

Keywords

Navigation