Skip to main content
Log in

Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparison between symbiosis-specific class V and defence-related class IV chitinases

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The Medicago truncatula (Gaertn.) ecotypes Jemalong A17 and R108-1 differ in Sinorhizobium meliloti-induced chitinase gene expression. The pathogen-inducible class IV chitinase gene, Mtchit 4, was strongly induced during nodule formation of the ecotype Jemalong A17 with the S. meliloti wild-type strain 1021. In the ecotype R108-1, the S. meliloti wild types Sm1021 and Sm41 did not induce Mtchit 4 expression. On the other hand, expression of the putative class V chitinase gene, Mtchit 5, was found in roots of M. truncatula cv. R108-1 nodulated with either of the rhizobial strains. Mtchit 5 expression was specific for interactions with rhizobia. It was not induced in response to fungal pathogen attack, and not induced in roots colonized with arbuscular mycorrhizal (AM) fungi. Elevated Mtchit 5 gene expression was first detectable in roots forming nodule primordia. In contrast to Mtchit 4, expression of Mtchit 5 was stimulated by purified Nod factors. Conversely, Mtchit 4 expression was strongly elevated in nodules formed with the K-antigen-deficient mutant PP699. Expression levels of Mtchit 5 were similarly increased in nodules formed with PP699 and its parental wild-type strain Sm41. Phylogenetic analysis of the deduced amino acid sequences of Mtchit 5 (calculated molecular weight = 41,810 Da, isoelectric point pH 7.7) and Mtchit 4 (calculated molecular weight 30,527 Da, isoelectric point pH 4.9) revealed that the putative Mtchit 5 chitinase forms a separate clade within class V chitinases of plants, whereas the Mtchit 4 chitinase clusters with pathogen-induced class IV chitinases from other plants. These findings demonstrate that: (i) Rhizobium-induced chitinase gene expression in M. truncatula occurs in a plant ecotype-specific manner, (ii) Mtchit 5 is a putative chitinase gene that is specifically induced by rhizobia, and (iii) rhizobia-specific and defence-related chitinase genes are differentially influenced by rhizobial Nod factors and K antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3a, b
Fig. 4a–f
Fig. 5a, b
Fig. 6a, b
Fig. 7a, b
Fig. 8
Fig. 9a, b

Similar content being viewed by others

Abbreviations

AM :

Arbuscular mycorrhiza(l)

BAC :

Bacterial artificial chromosome

bp :

Base pairs

RT–PCR :

Polymerase chain reaction after reverse transcription

References

  • Albus U, Baier R, Holst O, Pühler A, Niehaus K (2001) Suppression of an elicitor-induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides. New Phytol 151:597–606

    Article  CAS  Google Scholar 

  • Bécard G, Fortin FA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Google Scholar 

  • Blondon F, Marie D, Brown S, Kondorosi A (1994) Genome size and base composition in Medicago sativa and Medicago truncatula species. Genome 37:264–270

    CAS  Google Scholar 

  • Bonanomi A, Wiemken A, Boller T, Salzer P (2001) Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol 3:194–199

    Article  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    CAS  Google Scholar 

  • Broughton WJ, John CK (1979) Rhizobia in tropical legumes. III. Experimentation and supply in Malaysia 1927–1976. In: Broughton WJ, John CK, Lim B, Rajova C (eds) Soil microbiology and plant nutrition. University of Malaysia, Kuala Lumpur, pp 113–136

  • Brunner F, Stintzi A, Fritig B, Legrand M (1998) Substrate specificities of tobacco chitinases. Plant J 14:225–234

    Article  CAS  PubMed  Google Scholar 

  • Charon C, Sousa C, Crespi M, Kondorosi A (1999) Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell 11:1953–1965

    Google Scholar 

  • Cook D, van den Bosch K, de Bruijn F, Huguet T (1997) Model legumes get the nod. Plant Cell 9:275–281

    CAS  Google Scholar 

  • de Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, van Kammen A, de Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433

    PubMed  Google Scholar 

  • Gamas P, de Billy F, Truchet G (1998) Symbiosis-specific expression of two Medicago truncatula nodulin genes, MtN1 and MtN13, encoding products homologous to plant defense proteins. Mol Plant Microbe Interact 11:393–403

    CAS  PubMed  Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular infection in roots. New Phytol 84:489–500

    Google Scholar 

  • Goormachtig S, Lievens S, van de Velde W, van Montagu M, Holsters M (1998) Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. Plant Cell 10:905–915

    Article  CAS  PubMed  Google Scholar 

  • Goormachtig S, van de Velde W, Lievens S, Verplancke C, Herman S, de Keyser A, Holsters M (2001) Srchi24, a chitinase homolog lacking an essential glutamic acid residue for hydrolytic activity, is induced during nodule development on Sesbania rostrata. Plant Physiol 127:78–89

    Article  CAS  PubMed  Google Scholar 

  • Greene EA, Erard M, Dedieu A, Barker DG (1998) MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins. Plant Mol Biol 36:775–783

    Article  CAS  PubMed  Google Scholar 

  • Hamel F, Boivin R, Tremblay C, Bellemare G (1997) Structural and evolutionary relationships among chitinases of flowering plants. J Mol Evol 44:614–624

    CAS  PubMed  Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink HP, van Kammen A, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105:787–797

    CAS  Google Scholar 

  • Heitz T, Segond S, Kauffmann S, Geoffroy P, Prasad V, Brunner F, Fritig B, Legrand M (1994) Molecular characterization of a novel tobacco pathogenesis-related (PR) protein: a new plant chitinase/lysozyme. Mol Gen Genet 245:246–254

    CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium–legume symbiosis. Fung Gen Biol 23:205–212

    Article  CAS  Google Scholar 

  • Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol Plant Microbe Interact 10:307–315

    CAS  Google Scholar 

  • Kannenberg EL, Reuhs BL, Forsberg LS, Carlson RW (1998) Lipopolysaccharides and K antigens: their structures, biosynthesis, and functions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer, Dordrecht, pp 119–154

  • Kim YS, Lee JH, Yoon GM, Cho HS, Park SW, Suh MC, Choi D, Ha HJ, Liu JR, Pai HS (2000) CHRK1, a chitinase-related receptor-like kinase in tobacco. Plant Physiol 123:905–915

    Google Scholar 

  • Kim DJ, Baek JM, Uribe P, Kenerley CM, Cook DR (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384

    Google Scholar 

  • Kiss GB, Vincze E, Kalman Z, Forrai T, Kondorosi A (1979) Genetic and biochemical analysis of mutants affected in nitrate reduction in Rhizobium meliloti. J Gen Microbiol 113:105–118

    CAS  Google Scholar 

  • Kiss E, Reuhs BL, Kim JS, Kereszt A, Petrovics G, Putnoky P, Dusha I, Carlson RW, Kondorosi A (1997) The rkpGHI and -J genes are involved in capsular polysaccharide production by Rhizobium meliloti. J Bacteriol 179:2132–2140

    CAS  PubMed  Google Scholar 

  • Lange J, Mohr U, Wiemken A, Boller T, Vögeli-Lange R (1996) Proteolytic processing of class IV chitinase in the compatible interaction of bean roots with Fusarium solani. Plant Physiol 111:1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    CAS  Google Scholar 

  • Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MS, Bol JF, Cornelissen BJC, van den Elzen PJM, Linthorst HJM (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J 5:469–480

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A (2002) Suppression of plant defence in rhizobia–legume symbiosis. Trends Plant Sci 7:440–444

    Article  PubMed  Google Scholar 

  • Neuhaus JM, Fritig B, Linthorst HJM, Meins F, Mikkelsen JD, Ryals JA (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Rep 14:102–104

    CAS  Google Scholar 

  • Niehaus K, Kapp D, Pühler A (1993) Plant defence and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant. Planta 190:415–425

    CAS  Google Scholar 

  • Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318

    Article  CAS  PubMed  Google Scholar 

  • Perlick AM, Frühling M, Schröder G, Frosch SC, Pühler A (1996) The broad bean gene VfNOD32 encodes a nodulin with sequence similarities to chitinases that is homologous to (α/β)-barrel-type seed proteins. Plant Physiol 110:147–154

    Article  CAS  PubMed  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  Google Scholar 

  • Petrovics G, Putnoky P, Reuhs B, Kim J, Thorp TA, Noel KD, Carlson RW, Kondorosi A (1993) The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Mol Microbiol 8:1083–1094

    CAS  PubMed  Google Scholar 

  • Putnoky P, Petrovics G, Kereszt A, Grosskopf E, Ha DT, Banfalvi Z, Kondorosi A (1990) Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant–bacterium interaction. J Bacteriol 172:5450–5458

    PubMed  Google Scholar 

  • Reuhs BL, Carlson RW, Kim JS (1993) Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-d-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J Bacteriol 175:3570–3580

    CAS  PubMed  Google Scholar 

  • Reuhs BL, Williams MNV, Kim JS, Carlson RW, Coté F (1995) Suppression of the fix phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide. J Bacteriol 177:4289–4296

    CAS  PubMed  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vögeli R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen infection. Mol Plant Microbe Interact 13:763–777

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Scheres B, van Engelen F, van der Knaap E, van de Wiel C, van Kammen A, Bisseling T (1990) Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2:687–700

    CAS  PubMed  Google Scholar 

  • Schultze M, Quiclet-Sire B, Kondorosi E, Virelizier H, Glushka JN, Endre G, Géro SD, Kondorosi A (1992) Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci USA 89:192–196

    CAS  PubMed  Google Scholar 

  • Staehelin C, Müller J, Mellor RB, Wiemken A, Boller T (1992) Chitinase and peroxidase in effective (fix+) and ineffective (fix) soybean nodules. Planta 187:295–300

    CAS  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boller T, Kondorosi A (1994) Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J 5:319–330

    CAS  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Kondorosi A (1995) Lipo-chitooligosaccharide nodulation signals from Rhizobium meliloti induce their rapid degradation by the host plant alfalfa. Plant Physiol 108:1607–1614

    CAS  PubMed  Google Scholar 

  • Staehelin C, Schultze M, Tokuyasu K, Poinsot V, Promé JC, Kondorosi E, Kondorosi A (2000) N-deacetylation of Sinorhizobium meliloti Nod factors increases their stability in the Medicago sativa rhizosphere and decreases their biological activity. Mol Plant Microbe Interact 13:72–79

    CAS  PubMed  Google Scholar 

  • Staehelin C, Charon C, Crespi M, Boller T, Kondorosi A (2001) Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc Natl Acad Sci USA 98:15366–15371

    Article  CAS  PubMed  Google Scholar 

  • Tirichine L, de Billy F, Huguet T (2000) Mtsym6, a gene conditioning Sinorhizobium strain-specific nitrogen fixation in Medicago truncatula. Plant Physiol 123:845–851

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131:840–865

    Article  PubMed  Google Scholar 

  • van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    Article  PubMed  Google Scholar 

  • Vasse J, de Billy F, Truchet G (1993) Abortion of infection during the Rhizobium meliloti–alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J 4:555–566

    Article  Google Scholar 

  • Watanabe T, Kobori K, Miyashita K, Fuji T, Sakai H, Uchida M, Tanaka H (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 from Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268:18567–18572

    CAS  PubMed  Google Scholar 

  • Wiweger M, Farbos I, Ingouff M, Lagercrantz U, von Arnold S (2003) Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. J Exp Bot 54:2691–2699

    Article  CAS  PubMed  Google Scholar 

  • Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins) immunologically cross-reactive with nodulins. Planta 182:22–26

    CAS  Google Scholar 

  • Xie ZP, Staehelin C, Wiemken A, Broughton WJ, Müller J, Boller T (1999) Symbiosis-stimulated chitinase isoenzymes of soybean (Glycine max (L.) Merr.). J Exp Bot 50:327–333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Peter Putnoky (University of Pécs, Pécs, Hungary) and Eva Kondorosi (Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France) for providing bacterial strains. We also thank our colleagues from the Botanical Institute in Basel, Dirk Redecker, Philipp Raab, and Virgine Galati, for their help in phylogenetic analysis and for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Salzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salzer, P., Feddermann, N., Wiemken, A. et al. Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparison between symbiosis-specific class V and defence-related class IV chitinases. Planta 219, 626–638 (2004). https://doi.org/10.1007/s00425-004-1268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1268-8

Keywords

Navigation