Skip to main content
Log in

Regulation and a conserved intron sequence of liguleless3/4 knox class-I homeobox genes in grasses

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The nine class-I maize (Zea mays L.) knox genes are putative transcription factors normally expressed in shoot apices, but not in leaves. knotted1 (kn1) seems to function in shoot apical meristem maintenance, and rough sheath1 (rs1)-like genes may act in internode elongation. The function of liguleless3 (lg3)-type genes is still unknown. Here, we characterized lg3 as well as the two most closely related genes liguleless4a (lg4a, formerly knox11) and liguleless4b (lg4b, formerly knox5). We termed this subclass of knox genes lg3/4 genes. We studied the expression patterns of lg3/4 genes and compared their sequences. We obtained knockout mutants of lg3 by finding Mu transposon insertions into exons. Our results show that lg3 was not essential for plant development, and that lg4a and lg4b were likely to encode the redundant function. In addition, lg4a but not lg4b was ectopically expressed in the Lg4-O mutant, suggesting that this mutant was affected at the lg4a locus. We found that the lg3 gene was unique among knox genes as it was co-induced in the leaves of leaf mutants that ectopically expressed knox genes in the leaves. The leaf phenotype expressed in the dominant Rs1-O mutant was not altered when lg3 function was removed using the knockout. Genomic sequence comparisons of lg3, lg4a and lg4b from maize and the two homologous genes, osh6 and osh71, from rice revealed a 14-bp phylogenetic footprint in intron II. This sequence was conserved in nucleotide composition, position and polarity in the lg3/4 genes of divergent grasses representing six Gramineae subfamilies. In an independent experiment, this same conserved sequence was found in a yeast reverse one-hybrid screen for putative binding sites of the LG3 homeodomain protein. Distribution of this 14-bp sequence was examined within the public rice database. The possible function of this sequence in regulation of lg3/4 genes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

KN :

Knotted

KNOX :

Knotted1-like homeobox

LG :

Liguleless

Mu :

Mutator

RS :

Rough sheath

References

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    CAS  PubMed  Google Scholar 

  • Bauer P, Crespi MD, Szeczi J, Allison LA, Schultze M, Ratet P, Kondorosi E, Kondorosi A (1994) Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion. Plant Physiol 105:585–592

    Article  CAS  PubMed  Google Scholar 

  • Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, Modrusan Z, Crosby WL, Haughn GW (2001) The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 13:2455–2470

    PubMed  Google Scholar 

  • Bennett MD (1985) Plant genetics. Liss, New York, pp 283–302

  • Bensen RJ, Johal RJ, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84

    CAS  PubMed  Google Scholar 

  • Byrne M, Timmermans M, Kidner C, Martienssen R (2001) Development of leaf shape. Curr Opin Plant Biol 4:38–43

    CAS  PubMed  Google Scholar 

  • Chen JJ, Janssen BJ, Williams A, Sinha N (1997) A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9:1289–1304

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    CAS  PubMed  Google Scholar 

  • Foster T, Yamaguchi J, Wong BC, Veit B, Hake S (1999) Gnarley1 is a dominant mutation in the knox4 homeobox gene affecting cell shape and identity. Plant Cell 11:1239–1252

    Article  CAS  PubMed  Google Scholar 

  • Fowler JE, Freeling M (1996) Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Devel Genet 18:198–222

    Article  CAS  Google Scholar 

  • Freeling M (1992) A conceptual framework for maize leaf development. Devel Biol 153:44–58

    CAS  Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814

    CAS  PubMed  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Academic press, New York

  • Gyuris J, Golemis E, Chertkov H, Brent R (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803

    CAS  PubMed  Google Scholar 

  • Hardison R, Oeltjen J, Miller W (1997) Long human–mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res 7:959–966

    CAS  PubMed  Google Scholar 

  • Hay A, Kaur H. Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:1557–65

    PubMed  Google Scholar 

  • Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum and rice genomes. Proc Natl Acad Sci USA 100:12265–12270

    Article  CAS  PubMed  Google Scholar 

  • Inada DC, Bashir A, Lee C, Thomas BC, Ko C, Goff SA, Freeling M (2003) Conserved noncoding sequences in the grasses. Genome Res 13:2030–2041

    Article  CAS  PubMed  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Kaplinski NJ, Braun DM, Penterman J, Goff SA, Freeling M (2002) Utility and distribution of conserved noncoding sequences in the grasses. Proc Natl Acad Sci USA 99:6147–6151

    Article  PubMed  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    CAS  Google Scholar 

  • Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6:1877–1887

    Article  CAS  PubMed  Google Scholar 

  • Langham R, Walsh J, Dunn K, Goff S, Freeling M (2004) Gene duplication, fractionation and the origin of novelty. Genetics (in press)

  • Li JJ, Herskowitz I (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262:1870–1874

    CAS  PubMed  Google Scholar 

  • Li W-H, Grauer D (1991) Fundamentals of molecular evolution. Sinauer, Sutherland, MA

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    CAS  PubMed  Google Scholar 

  • Muehlbauer GJ, Fowler JE, Girard L, Tyers R, Harper L, Freeling M (1999) Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. Plant Physiol 119:651–662

    CAS  PubMed  Google Scholar 

  • Müller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W (2001) In vitro interactions between barley TALE homeodomain proteins suggest a role for protein–protein associations in the regulation of Knox gene function. Plant J 27:13–23

    PubMed  Google Scholar 

  • Müller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730

    Article  PubMed  Google Scholar 

  • Nagasaki H, Sakamoto T, Sato Y, Matsuoka M (2001) Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell 13:2085–2098

    Article  CAS  PubMed  Google Scholar 

  • Ori N, Juarez MT, Jackson D, Yamaguchi J, Banowetz GM, Hake S (1999) Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. Plant Cell 11:1073–1080

    CAS  PubMed  Google Scholar 

  • Postma-Haarsma AD, Verwoert IIGS, Stronk OP, Koster J, Lamers GEM, Hoge JHC, Meijer AH (1999) Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of cDNA libraries covering the early stages of rice embryogenesis. Plant Mol Biol 39:257–271

    Article  CAS  PubMed  Google Scholar 

  • Postma-Haarsma AD, Rueb S, Scarpella E, den Besten W. Hoge JH, Meijer AH (2002) Developmental regulation and downstream effects of the knox class homeobox genes Oskn2 and Oskn3 from rice. Plant Mol Biol 48:423–441

    Article  CAS  PubMed  Google Scholar 

  • Reiser L, Sanchez-Baracaldo P, Hake S (2000) Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol Biol 42:151–166

    Google Scholar 

  • Santi L, Wang Y, Stile MR, Berendzen K, Wanke D, Roig C, Pozzi C, Muller K, Muller J, Rohde W, Salamini F (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J 34:813–826

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO 18:992–1002

    Article  CAS  PubMed  Google Scholar 

  • Scanlon MJ, Schneeberger RG, Freeling M (1996) The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122:1683–1691

    CAS  PubMed  Google Scholar 

  • Schneeberger RG, Becraft PW, Hake S, Freeling M (1995) Ectopic expression of the knox homeobox gene rough sheath1 alters cell fate in the maize leaf. Development 9:2292–2304

    CAS  Google Scholar 

  • Schneeberger R, Tsiantis M, Freeling M, Langdale MA (1998) The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125:2857–2865

    CAS  PubMed  Google Scholar 

  • Sentoku N, Sato Y, Kurata N, Ito Y, Kitano H, Matsuoka M (1999) Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell 11:1651–1663

    Article  CAS  PubMed  Google Scholar 

  • Sentoku N, Sato Y, Matsuoka M (2000) Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol 220:358–364

    Article  CAS  PubMed  Google Scholar 

  • Smith HM, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell 8:1717–1727

    Article  Google Scholar 

  • Smith HMS, Boschke I, Hake S (2002) Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA 99:9579–9584

    Article  CAS  PubMed  Google Scholar 

  • Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Devel 116:21–30

    CAS  Google Scholar 

  • Timmermans MCP, Hudson A, Becraft PW, Nelson T (1999) ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284:151–153

    CAS  PubMed  Google Scholar 

  • Tsiantis M, Langdale JA (1998) The formation of leaves. Curr Opin Plant Biol 1:43–48

    CAS  PubMed  Google Scholar 

  • Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284:154–156

    CAS  PubMed  Google Scholar 

  • Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R (2002) The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc Natl Acad Sci USA 99:4730–4735

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Reiser L, Hake S (2000) Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127:3161–3172

    CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Kerstetter, J. Yamaguchi and S. Hake for providing plasmids containing the homeobox regions of lg4a and lg4b. This work was supported by an NIH grant (GM42610 to M.F.). Two lg3 insertion mutants were derived from the TUSC program, Pioneer Hi-Bred International, a Dupont Company. P.B. was the recipient of a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, P., Lubkowitz, M., Tyers, R. et al. Regulation and a conserved intron sequence of liguleless3/4 knox class-I homeobox genes in grasses. Planta 219, 359–368 (2004). https://doi.org/10.1007/s00425-004-1233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1233-6

Keywords

Navigation