Skip to main content
Log in

The Na+-translocating ATPase in the plasma membrane of the marine microalga Tetraselmis viridis catalyzes Na+/H+ exchange

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, Δψ, generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished Δψ at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane Δψ is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

Abbreviations

BTP :

Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane

CCCP :

Carbonyl cyanide m-chlorophenylhydrazone

DTT :

Dithiothreitol

NCDC :

2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate

PMSF :

Phenylmethylsulfonyl fluoride

PM :

Plasma membrane

References

  • Balnokin YV, Popova L (1994) ATP-driven Na+-pump in the plasma membrane of the marine unicellular alga Platymonas viridis. FEBS Lett 343:61–64

    Article  CAS  PubMed  Google Scholar 

  • Balnokin YV, Popova LG, Myasoyedov NA (1993) Plasma membrane ATPase of marine unicellular alga Platymonas viridis. Plant Physiol Biochem 31:159–168

    CAS  Google Scholar 

  • Balnokin Y, Popova L, Gimmler H (1997) Further evidence for an ATP-driven sodium pump in the marine alga Tetraselmis (Platymonas) viridis. J Plant Physiol 150:264–270

    CAS  Google Scholar 

  • Balnokin YV, Popova LG, Andreev IM (1999) Electrogenicity of the Na+-ATPase from the marine microalga Tetraselmis (Platymonas) viridis and associated H+ countertransport. FEBS Lett 462:402–406

    Article  CAS  PubMed  Google Scholar 

  • Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse J-M, Maurel C (2000) Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biochim Biophys Acta 1465:199–218

    PubMed  Google Scholar 

  • Bashford CL, Chance B, Prince RC (1979) Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria. Biochim Biophys Acta 545:46–57

    CAS  PubMed  Google Scholar 

  • Clement NR, Gould JM (1981) Pyranine (8-hydroxy-1,3,6,-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry 20:1534–1538

    CAS  PubMed  Google Scholar 

  • Gimmler H (2000) Primary sodium plasma membrane ATPases in salt-tolerant algae: facts and fictions. J Exp Bot 51:1171–1178

    CAS  PubMed  Google Scholar 

  • Glynn IM, Karlish S (1975) The sodium pumps. Annu Rev Physiol 37:33–55

    Article  Google Scholar 

  • Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291:189–191

    Article  CAS  PubMed  Google Scholar 

  • Heefner DL, Harold FM (1982) ATP-driven sodium pump in Streptococcus faecalis. Proc Natl Acad Sci USA 79:2798–2802

    CAS  PubMed  Google Scholar 

  • Kaieda N, Wakagi T, Kayama N (1998) Presence of Na+-stimulated V-type ATPase in the membrane of a facultatively anaerobic and halophilic alkaliphile. FEMS Microbiol Lett 167:57–61

    CAS  PubMed  Google Scholar 

  • Krulwich TA (1983) Na+/H+ antiporters. Biochim Biophys Acta 726:245–264

    Article  CAS  PubMed  Google Scholar 

  • Padan E, Schuldinger S (1993) Na+/H+ antiporters, molecule devices that couple Na+ and H+ circulations in cells. J Bioenerg Biomembr 25:647–669

    CAS  PubMed  Google Scholar 

  • Pagis LY, Popova LG, Andreev IM, Balnokin YV (2001) Ion specificity of Na+-transporting systems in the plasma membrane of the halotolerant alga Tetraselmis (Platymonas) viridis. Russ J Plant Physiol 48:281–286

    Article  CAS  Google Scholar 

  • Popova LG, Balnokin YV (1992) H+-translocating ATPase and Na+/H+ antiport activities in the plasma membrane of the marine alga Platymonas viridis. FEBS Lett 309:333–336

    Article  CAS  PubMed  Google Scholar 

  • Popova L, Balnokin Y, Dietz K-J, Gimmler H (1999) Characterization of phosphorylated intermediates synthesized during the catalytic cycle of the sodium adenosine triphosphate as in the plasma membrane of the marine unicellular alga Tetraselmis (Platymonas) viridis. J Plant Physiol 155:302–309

    CAS  Google Scholar 

  • Rasi-Caldogno F, Pugliarello MC, DeMichelis MI (1987) The Ca2+-transport ATPase of plant plasma membrane catalyzes a nH+/ Ca2+ exchange. Plant Physiol 83:994–1000

    Google Scholar 

  • Shono M, Hara Y, Wada M, Fujii T (1996) A sodium pump in the plasma membrane of the marine alga Heterosigma akashiwo. Plant Cell Physiol 37:385–388

    CAS  Google Scholar 

  • Simpson IA, Sonne O (1982) A simple, rapid and sensitive method for measuring protein concentration in subcellular membrane fractions prepared by sucrose density ultracentrifugation. Anal Biochem 119:424–427

    CAS  PubMed  Google Scholar 

  • Stein WD (1986) Transport and diffusion across cell membranes. Academic Press, San Diego, pp 477–571

  • Wada M, Satoh S, Kasamo K, Fujii T (1989) Presence of a sodium-activated ATPase in the plasma membrane of the marine Raphidophycean Heterosigma akashiwo. Plant Cell Physiol 30:923–928

    CAS  Google Scholar 

  • Yu X, Carrol S, Rigaud JL, Inesi G (1993) H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in the reconstituted proteoliposomes. Biophys J 64:1232–1242

    CAS  PubMed  Google Scholar 

  • Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, Grant # 01-04-49135 and Grant # 02-04-06713. We thank Dr. A. Grabov (Imperial College, London) for critical reading of the manuscript and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii V. Balnokin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balnokin, Y.V., Popova, L.G., Pagis, L.Y. et al. The Na+-translocating ATPase in the plasma membrane of the marine microalga Tetraselmis viridis catalyzes Na+/H+ exchange. Planta 219, 332–337 (2004). https://doi.org/10.1007/s00425-004-1224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1224-7

Keywords

Navigation