Skip to main content
Log in

Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Treatment of cultured Chlorella vulgaris Beijerinck cells with 0.1–10 μM brassinazole (Brz2001), an inhibitor of brassinosteroid (BR) biosynthesis, inhibits their growth during the first 48 h of cultivation in the light. This inhibition is prevented by the co-application of BR. This result suggests that the presence of endogenous BRs during the initial steps of the C. vulgaris cell cycle is indispensable for their normal growth in the light. In darkness, a treatment with 10 nM brassinolide (BL) promotes growth through the first 24 h of culture, but during the following 24 h the cells undergo complete stagnation. Treatment of dark-grown cells with either Brz2001 alone, or a mixture of 10 nM BL and 0.1/10 μM Brz2001, also stimulates their growth. The effects of treatment with 10 nM BL mixed with 0.1–10 μM of a mevalonate-pathway inhibitor (mevinolin), or a non-mevalonate-pathway inhibitor (clomazone), were also investigated. Mevinolin at these concentrations did not inhibit growth of C. vulgaris; however, clomazone did. Addition of BL overcame the inhibition. These results suggest that the mevalonate pathway does not function in C. vulgaris, and that the non-mevalonate pathway for isopentenyl diphosphate biosynthesis is responsible for the synthesis of one of the primary precursors in BR biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3
Fig. 4a,b
Fig. 5a,b
Fig. 6a,b
Fig. 7a,b
Fig. 8a,b
Fig. 9a,b
Fig. 10

Similar content being viewed by others

Abbreviations

Brz :

Brassinazole

BL :

Brassinolide

BR :

Brassinosteroid

Clo :

Clomazone

DMAPP :

Dimethylallyl diphosphate

IPP :

Isopentenyl diphosphate

MVA :

Mevalonic acid

Mev :

Mevinoline

References

  • Asami T, Yoshida S (1999) Brassinosteroid biosynthesis inhibitors. Trends Plant Sci 4:348–353

    Article  PubMed  Google Scholar 

  • Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123:93–99

    CAS  PubMed  Google Scholar 

  • Asami T, Mizutani M, Fujioka S, Goda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthesis pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem 276:25687–25691

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Czerpak R (1998) Physiological and biochemical role of brassinosteroids and their structure-activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). J Plant Growth Regul 17:131–139

    CAS  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  PubMed  Google Scholar 

  • Bishop GJ, Yokota T (2001) Plant steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol 42:114–120

    PubMed  Google Scholar 

  • Buschmann E, Zeeh B, Gotz N, Sproesser L, Walker N (1987) Chelat kontrollierte Grignard-Reaktionen mit a-(1H-1,2,4triazol-1-yl)ketonen. Liebigs Ann Chem 349–355

  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243

    Google Scholar 

  • Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999) The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119:897–907

    CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    CAS  Google Scholar 

  • Disch A, Schwender J, Müller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388

    CAS  PubMed  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Li J, Choi Y-H, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9:1951–1962

    Google Scholar 

  • Fujioka S, Noguchi T, Yokota T, Takatsuto S, Yoshida S (1998) Brassinosteroids in Arabidopsis thaliana. Phytochemistry 48:595–599

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Noguchi T, Watanabe T, Takatsuto S, Yoshida S (2000) Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry 53:549–553

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130:930–939

    Article  CAS  PubMed  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen Jr JD, Steffens GL, Flippen-Anderson JL, Cook Jr JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    CAS  Google Scholar 

  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    CAS  Google Scholar 

  • Min YK, Asami T, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (1999) New lead compounds for brassinosteroid biosynthesis inhibitors. Bioorg Med Chem Lett 9:425–430

    Article  CAS  PubMed  Google Scholar 

  • Mueller C, Schwender J, Zeidler J, Lichtenthaler HK (2000) Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis. Biochem Soc Trans 28:792–793

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Min YK, Nakano T, Asami T, Yoshida S (2000) Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta 211:781–790

    CAS  PubMed  Google Scholar 

  • Nagata N, Asami T, Yoshida S (2001) Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants (Lepidium sativum). Plant Cell Physiol 42:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Park S-H, Han K-S, Kim T-W, Shim J-K, Takatsuto S, Yokota T, Kim S-K (1999) In vivo and in vitro conversion of teasterone to typhasterol in cultured cells of Marchantia polymorpha. Plant Cell Physiol 40:955–960

    CAS  Google Scholar 

  • Pirson A, Lorenzen H (1966) Synchronized dividing algae. Annu Rev Plant Physiol 17:439–458

    Article  Google Scholar 

  • Rodriguez-Concepción M, Boronat A (2002) Elucidation of the methylerythriol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sasse JM (1999) Physiological actions of brassinosteroids. In: Sakurai A, Yokota T, Clouse SD (eds) Brassinosteroids: steroidal plant hormones. Springer, Berlin Heidelberg New York, pp 137–161

  • Sayegh A, Greppin H (1973) Chlorella rubescens Ch. Essai de synchronisation et mise en évidence de rythmes endogènes. Arch Sci Genève 8:6–18

    Google Scholar 

  • Schwender J, Zeidler J, Gröner R, Müller C, Focke M, Braun S, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134

    CAS  PubMed  Google Scholar 

  • Schwender J, Gemünden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythriol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    Article  CAS  PubMed  Google Scholar 

  • Sekimata K, Kimura T, Kaneko I, Nakano T, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2001) A specific brassinosteroid biosynthesis inhibitor, Brz2001: evaluation of its effects on Arabidopsis, cress, tobacco and rice. Planta 213:716–721

    Article  CAS  PubMed  Google Scholar 

  • Somogyi M (1954) Notes on sugar determination. J Biol Chem 195:19–23

    Google Scholar 

  • Suzuki H, Inoue T, Fujioka S, Saito T, Takatsuto S, Yokota T, Murofushi N, Yanagisawa T, Sakurai A (1995) Conversion of 24-methylcholesterol to 6-oxo-24-methylcholestanol, a putative intermediate of the biosynthesis of brassinosteroids, in cultured cells of Catharanthus roseus. Phytochemistry 40:1391–1397

    Article  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    PubMed  Google Scholar 

  • Takatsuto S, Abe H, Gamoh K (1990) Evidence for brassinosteroids in strobilus of Equisetum arvense L. Agric Biol Chem 54:1057–1059

    CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Yokota T (1997) The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci 2:137–143

    Article  Google Scholar 

  • Yokota T, Kim SK, Fukui Y, Takahashi N, Takeuchi Y, Takematsu T (1987) Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: configuration at C-24. Phytochemistry 26:503–506

    Article  CAS  Google Scholar 

  • Zeidler J, Schwender J, Mueller C, Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria. Biochem Soc Trans 28:796–798

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bajguz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajguz, A., Asami, T. Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris . Planta 218, 869–877 (2004). https://doi.org/10.1007/s00425-003-1170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1170-9

Keywords

Navigation