Skip to main content
Log in

Tissue-specific and subcellular localization of phototropin determined by immuno-blotting

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phototropin (phot) is a UV/blue- light receptor mediating phototropic reactions of plants as a response to unilateral irradiation. Using an antiserum directed against the N-terminal part of Arabidopsis phot1, we show here cross-reaction with phototropin from Avena sativa, Eruca sativa, Glycine max, Lepidium sativum, Lycopersicon esculentum, Pisum sativum, Sinapis alba, and Zea mays. In all investigated plants, blue light irradiation led to a gel mobility shift of phototropin corresponding to an apparent increase in size of 2–3 kDa. This increase is transient: the apparent size of the phototropin band reverted back to the original size in the dark within 60–90 min. The capacity for in vitro phosphorylation increased to 350% (A. sativa) and 200% (L. sativum) at 90 min after a blue light pulse without an increase in the amount of phototropin protein. Starting from coleoptile tips of monocots that contained the highest concentration of phototropin, we found an exponential decrease in basipetal sections of equal size while a linear decrease was determined for dicots in basipetal sections starting from the section below the hypocotyl hook. We confirmed the membrane association of all phototropin in dark-grown seedlings; after a 2-min blue light pulse, however, 20% of phototropin was found in the cytosolic fraction and only 80% in the membrane fraction. Both fractions showed the gel mobility shift indicating light-dependent autophosphorylation. Detergent-free solubilization of phototropin with chaotropic reagents was investigated with etiolated A. sativa seedlings. Up to 95% of phototropin was solubilized with a mixture of sodium bromide and sodium diphosphate, and subsequently subjected to affinity purification using Cibachron Blue 3GA–agarose as a dinucleotide analogue. Immediately after solubilization, soluble phototropin still showed blue-light-dependent autophosphorylation but lost its activity within less than 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GFP :

Green fluorescent protein

phot :

Phototropin

References

  • Baxter A, Currie LM, Durham J (1978) A general method for purification of deoxycytidine kinase. Biochem J 173:1005–1008

    CAS  PubMed  Google Scholar 

  • Briggs WR (1963) The phototropic responses of higher plants. Annu Rev Plant Physiol 14:311–352

    CAS  Google Scholar 

  • Briggs WR, Olney MA (2001) Photoreceptors in plant photomorphogenesis to date: five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol 125:85–88

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J, Jarillo JA, Kagawa H, Liscum E, Hagatani A, Okada K, Salomon M, Rüdiger W, Sakai T, Takano M, Wada M, Watson JC (2001) The phototropin family of photoreceptors. Plant Cell 13:993–997

    CAS  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu Y-J, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  CAS  PubMed  Google Scholar 

  • Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas A, Liscum E, Briggs WR (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701

    Article  CAS  PubMed  Google Scholar 

  • Crosson S, Moffat K (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14:1067–1075

    Google Scholar 

  • Fankhauser C (2001) The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem 276:11453–11456

    Article  CAS  PubMed  Google Scholar 

  • Gallagher S, Short TW, Ray PM, Pratt LH, Briggs WR (1988) Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections. Proc Natl Acad Sci USA 85:8003–8007

    CAS  Google Scholar 

  • Hager A, Brich M (1993) Blue-light-induced phosphorylation of a plasma-membrane protein from phototropically sensitive tips of maize coleoptiles. Planta 189:567–576

    CAS  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han I-S, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123

    Article  CAS  PubMed  Google Scholar 

  • Kay CWM, Schleicher E, Kuppig A, Hofner H, Rüdiger W, Schleicher M, Fischer M, Bacher A, Weber S, Richter G (2003) Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin. J Biol Chem 278:10973–10982

    Article  CAS  PubMed  Google Scholar 

  • Knieb E (2002) Struktur, Funktion und spektroskopische Eigenschaften der flavinbindenden Domänen des pflanzlichen Blaulichtrezeptors Phototropin (phot1). Dissertation, University of Munich

  • Liscum E, Briggs WR (1995) Mutations in the nph1 locus of Arabidopsis disrupts the perception of phototropic stimuli. Plant Cell 7:473–485

    CAS  PubMed  Google Scholar 

  • Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961–964

    Article  CAS  PubMed  Google Scholar 

  • Palmer JM, Short TW, Gallagher S, Briggs WR (1993) Blue light-induced phosphorylation of a plasma membrane-associated protein in Zea mays L. Plant Physiol 102:1211–1218

    CAS  PubMed  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Salomon M, Zacherl M, Rüdiger W (1996) Changes in blue-light-dependent protein phosphorylation during the early development of etiolated seedlings. Planta 199:336–342

    CAS  PubMed  Google Scholar 

  • Salomon M, Zacherl M, Rüdiger W (1997a) Phototropism and protein phosphorylation in higher plants. Unilateral blue light irradiation generates a directional gradient of protein phosphorylation across the oat coleoptile. Bot Acta 110:214–216

    CAS  Google Scholar 

  • Salomon M, Zacherl M, Rüdiger W (1997b) Asymmetric blue light-dependent phosphorylation of a 116 kDa plasma-membrane protein can be correlated with the first- and second positive phototropic curvature of oat (Avena sativa L) coleoptiles. Plant Physiol 115:485–491

    CAS  PubMed  Google Scholar 

  • Salomon M, Zacherl M, Luff L, Rüdiger W (1997c) Exposure of oat seedlings to blue light results in amplified phosphorylation of the putative photoreceptor for phototropism and in higher sensitivity of the plants to phototropic stimulation. Plant Physiol 115:493–500

    CAS  PubMed  Google Scholar 

  • Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410

    Article  CAS  PubMed  Google Scholar 

  • Salomon M, Eisenreich W, Dürr H, Schleicher E, Knieb E, Massey V, Rüdiger W, Müller F, Bacher A, Richter G (2001) An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc Natl Acad Sci USA 98:12357–12361

    CAS  PubMed  Google Scholar 

  • Salomon M, Knieb E, von Zeppelin T, Rüdiger W (2003) Mapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42:4217–4225

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Jain PK, Maheshwari S, Khurana JP (1997) Rapid blue-light-induced phosphorylation of plasma-membrane-associated proteins in wheat. Phytochemistry 44:775–780

    Article  CAS  Google Scholar 

  • Short TW, Briggs WR (1990) Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L) seedlings. Plant Physiol 92:179–185

    CAS  Google Scholar 

  • Short TW, Briggs WR (1994) The transduction of blue light signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 45:143–171

    Article  CAS  Google Scholar 

  • Short TW, Porst M, Briggs WR (1992) A photoreceptor system regulating in vivo and in vitro phosphorylation of a pea plasma membrane protein. Photochem Photobiol 55:773–781

    CAS  Google Scholar 

  • Short TW, Reymond P, Briggs WR (1993) A pea plasma membrane protein exhibiting blue light-induced phosphorylation retains photosensitivity following Triton solubilisation. Plant Physiol 101:647–655

    CAS  PubMed  Google Scholar 

  • Short TW, Porst M, Palmer J, Fernbach E, Briggs WR (1994) Blue light induces phosphorylation at seryl residues on a pea (Pisum sativum L) plasma membrane protein. Plant Physiol 104:1317–1324

    CAS  PubMed  Google Scholar 

  • Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR, Bogomolni RA (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 276:36493–36500

    Article  CAS  PubMed  Google Scholar 

  • Warpeha KMF, Briggs WR (1993) Blue light-induced phosphorylation of a plasma membrane protein in pea: a step in the signal transduction chain for phototropism. Aust J Plant Physiol 20:393–403

    CAS  Google Scholar 

  • Zacherl M (1997) Zum Phototropismus bei Hafer (Avena sativa) und Mais (Zea mays): Charakterisierung der blaulichtabhängigen Protein-Phosphorylierung und Isolierung der nph1-Gene. Dissertation. University of Munich

Download references

Acknowledgments

We thank Prof. W. R. Briggs and Dr. J. Christie, both at the Department of Plant Biology, Carnegie Institution, Stanford, California, for the antiserum directed against Arabidopsis phot1. This work was supported by the Deutsche Forschungsgemeinschaft, Bonn (Ru 108/31-4) and the Fonds der Chemischen Industrie, Frankfurt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfhart Rüdiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knieb, E., Salomon, M. & Rüdiger, W. Tissue-specific and subcellular localization of phototropin determined by immuno-blotting. Planta 218, 843–851 (2004). https://doi.org/10.1007/s00425-003-1164-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1164-7

Keywords

Navigation