Skip to main content
Log in

Functional expression in yeast of an N-deleted form of At-ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana, and characterization of a hyperactive mutant

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A constitutively active form of At-ACA8, a plasma membrane Ca2+-ATPase from Arabidopsis thaliana (L.) Heynh., from which the first 74 amino acids containing the calmodulin-binding domain (Δ74-At-ACA8) had been deleted, was expressed in Saccharomyces cerevisiae strain K616, which lacks the main endogenous active Ca2+ transport systems. Δ74-At-ACA8 complemented the K616 phenotype, making it able to grow in a calcium-depleted medium. Δ74-At-ACA8 protein, which co-migrated with the endoplasmic reticulum marker BiP in a sucrose-density gradient, catalyzed MgATP-dependent Ca2+ uptake and Ca2+-dependent MgATP hydrolysis, and retained the biochemical characteristics of the native plant plasma membrane Ca2+-ATPase (low specificity for nucleoside triphosphate, high sensitivity to inhibition by the fluorescein derivatives erythrosin B and eosin Y), thus confirming that it is correctly folded and functional. Substitution of the 794HE residues (numbers refer to full-length At-ACA8) following the highly conserved TGDG(TV)NDP(AS)L motif in the cytoplasmic headpiece with two lysine residues generated an hyperactive protein, with a catalytic activity 2-fold higher than that of Δ74-At-ACA8. The 794HE→KK mutant was also about 6-fold more sensitive than Δ74-At-ACA8 to inhibition by vanadate, indicating that the mutation determines an increase in the proportion of enzyme in the E2 state during the catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5
Fig. 6
Fig. 7a,b
Fig. 8a,b
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

aa :

Amino acids

CaM :

Calmodulin

EB :

Erythrosin B

ER :

Endoplasmic reticulum

EY :

Eosin Y

FITC :

Fluorescein isothiocyanate

PM :

Plasma membrane

References

  • Ambesi A, Miranda M, Petrov VV, Slayman CW (2000) Biogenesis and function of the yeast plasma-membrane H+-ATPase. J Exp Bot 203:155–160

    CAS  Google Scholar 

  • Askerlund P, Sommarin M (1996) Calcium efflux transporters in higher plants. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS, Oxford, UK, pp 281–299

  • Bonza C, Carnelli A, De Michelis MI, Rasi-Caldogno F (1998) Purification of the plasma membrane Ca2+-ATPase from radish seedlings by calmodulin–agarose affinity chromatography. Plant Physiol 116:845–851

    Article  CAS  PubMed  Google Scholar 

  • Bonza MC, Morandini P, Luoni L, Geisler M, Palmgren MG, De Michelis MI (2000) Cloning of At-ACA8, a plasma membrane localized, calmodulin regulated calcium-ATPase of Arabidopsis thaliana and localization of its calmodulin binding domain at the N-terminus. Plant Physiol 123:1495–1505

    Article  CAS  PubMed  Google Scholar 

  • Brandt PC, Vanaman TC (1998) Calmodulin and ion flux regulation. In: Van EldiK L, Watterson DM (eds) Calmodulin and signal transduction. Brace & Company, USA Academic Press, Harcourt, pp 397–471

  • Cantley LC, Cantley LG, Josephson L (1978) A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem 253:7361–7368

    CAS  PubMed  Google Scholar 

  • Carnelli A, De Michelis MI, Rasi-Caldogno F (1992) Plasma membrane Ca2+-ATPase of radish seedlings: I. Biochemical characteristics using ITP as substrate. Plant Physiol 98:1196–1201

    CAS  Google Scholar 

  • Cunningham KW, Fink GR (1994) Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol 124:351–363

    CAS  PubMed  Google Scholar 

  • De Michelis MI, Rasi-Caldogno F, Pugliarello MC (1992) The plasma membrane Ca2+ pump: potential role in Ca2+ homeostasis. In: Karssen CM et al (eds) Progress plant growth regulation, Kluwer, Amsterdam, pp 675–685

  • De Michelis MI, Carnelli A, Rasi-Caldogno F (1993) The Ca-pump of the plasma membrane of Arabidopsis thaliana: characteristics and sensitivity to fluorescein derivatives. Bot Acta 106:20–25

    Google Scholar 

  • Denecke J, Goldman MH, Demolder J, Seurinck J, Botterman J (1991) The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 3:1025–1035

    CAS  PubMed  Google Scholar 

  • Evans DE, Williams LE (1998) P-type calcium ATPases in higher plants—biochemical, molecular and functional properties. Biochim Biophys Acta 1376:1–2

    Article  CAS  PubMed  Google Scholar 

  • Geisler M, Axelsen K, Harper JF, Palmgren MG (2000a) Molecular aspects of higher plant P-type Ca2+-ATPases. Biochim Biophys Acta 1465:52–78

    Article  CAS  PubMed  Google Scholar 

  • Geisler M, Frangne N, Gomès E, Martinoia E, Palmgren MJ (2000b) The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol 124:1814–1827

    Article  CAS  PubMed  Google Scholar 

  • Hager K, Mandala SM, Davenport JW, Speicher DW, Benz EJ Jr, Slayman CW (1986) Amino acid sequence of the plasma membrane ATPase of Neurospora crassa: deduction from genomic and cDNA sequences. Proc Natl Acad Sci USA 83:7693–7697

    CAS  PubMed  Google Scholar 

  • Harper JF, Hong B, Hwang I, Guo HG, Stoddard R, Huang JF, Palmgren MG, Sze H (1998) A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. J Biol Chem 273:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Berkelman T, Franklin AE, Hoffman NE (1993) Characterization of a gene encoding a Ca2+-ATPase-like protein in the plastid envelope. Proc Natl Acad Sci USA 90:10066–10070

    CAS  PubMed  Google Scholar 

  • Ito H, Fukuda K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  Google Scholar 

  • Jorgensen PL, Hakansson KO, Karlish SJD (2003) Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu Rev Physiol 65:817–849

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Luoni L, Bonza MC, De Michelis MI (2000) H+/Ca2+ exchange driven by the plasma membrane Ca2+-ATPase of Arabidopsis thaliana reconstituted in proteoliposomes after calmodulin-affinity purification. FEBS Lett 482:225–230

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Vogg, G, Sanders D (1990) Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc Natl Acad Sci USA 87:9348–9352

    CAS  PubMed  Google Scholar 

  • Møller JV, Juul B, Le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    PubMed  Google Scholar 

  • Ohta T, Nagano K, Yoshida M (1986) The active site structure of Na+/K+-transporting ATPase: location of the 5-(p-fluorosulfonyl)benzoyladenosine binding site and soluble peptides released by trypsin. Proc Natl Acad Sci USA 83:2071–2075

    CAS  PubMed  Google Scholar 

  • Olbe M, Sommarin M (1991) ATP-dependent Ca2+ transport in wheat root plasma membrane vesicles. Physiol Plant 83:535–543

    Article  CAS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    CAS  PubMed  Google Scholar 

  • Palmgren MG, Christensen G (1993) Complementation in situ of the yeast plasma membrane H+-ATPase gene pma1 by an H+-ATPase gene from a heterologous species. FEBS Lett 317:216–222

    Article  CAS  PubMed  Google Scholar 

  • Pedersen PA, Jorgensen JR, Jorgensen PL (2000) Importance of conserved α-subunit segment 709GDGVND for Mg2+ binding, phosphorylation and energy transduction in Na-K-ATPase. J Biol Chem 275:37588–37595

    Article  CAS  PubMed  Google Scholar 

  • Portillo F, Serrano R (1988) Dissection of functional domains of the yeast proton-pumping ATPase by directed mutagenesis. EMBO J 7:1793–1798

    CAS  PubMed  Google Scholar 

  • Rasi-Caldogno F, Pugliarello MC, De Michelis MI (1987) The Ca2+ transport ATPase of plant plasma membrane catalyzes an H+/Ca2+ exchange. Plant Physiol 83:994–1000

    CAS  Google Scholar 

  • Rasi-Caldogno F, Pugliarello MC, Olivari C, De Michelis MI (1989) Identification and characterization of the Ca2+-ATPase which drives active transport of Ca2+ at the plasma membrane of radish seedling. Plant Physiol 90:1429–1434

    CAS  Google Scholar 

  • Rasi-Caldogno F, Carnelli A, De Michelis MI (1995) Identification of the plasma membrane Ca2+-ATPase and of its autoinhibitory domain. Plant Physiol 108:105-113

    CAS  PubMed  Google Scholar 

  • Regenberg B, Villalba JM, Lanfermeijer FC, Palmgren MG (1995) C-terminal deletion analysis of plant plasma membrane H+-ATPase: yeast as a model system for solute transport across the plant plasma membrane. Plant Cell 7:1655–66

    CAS  PubMed  Google Scholar 

  • Rhee KH, Scarborough GA, Henderson R (2002) Domain movements of plasma membrane H+-ATPase: 3D structures of two states by electron cryo-microscopy. EMBO J 21:3582–3589

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell [Suppl] 2002:401–417

  • Serrano R (1988) H+-ATPase from plasma membrane of Saccharomyces cerevisiae and Avena sativa roots: purification and reconstitution. Methods Enzymol 157:533–544

    CAS  PubMed  Google Scholar 

  • Serrano R (1989) Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol Plant Mol Biol 40:61–94

    Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+-pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433–462

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura N, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  • Trewavas AJ (1999) Le calcium, c’est la vie: calcium makes waves. Plant Physiol 120:1–6

    CAS  PubMed  Google Scholar 

  • Valiakhmetov A, Perlin DS (2003) Molecular architecture of the phosphorylation region of the yeast plasma membrane H+-ATPase. J Biol Chem 278:6330–6336

    Article  CAS  PubMed  Google Scholar 

  • Villalba JM, Palmgren MG, Berberiàn GE, Ferguson C, Serrano R (1992) Functional expression of plant plasma membrane H+-ATPase in yeast endoplasmic reticulum. J Biol Chem 267:12341–12349

    CAS  PubMed  Google Scholar 

  • Vilsen B, Andersen JP, MacLennan DH (1991) Functional consequences of alterations to amino acids located in the hinge domain of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 266:16157–16164

    CAS  PubMed  Google Scholar 

  • Williams LE, Schueler SB, Briskin DP (1990) Further characterization of the red beet plasma membrane Ca2+-ATPase using GTP as an alternative substrate. Plant Physiol 92:747–754

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. N.E. Hoffman (Department of Plant Biology, Carnegie Institution of Washington, Stanford), Dr. C.W. Slayman (Departments of Genetics and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven) and Dr. A. Vitale (CNR, Istituto di Biologia e Biotecnologia Agraria, Milano, Italy) for the generous gifts of the antisera against At-ACA1, N. crassa H+-ATPase and BiP, respectively. We also acknowledge Dr. K.W. Cunningham (Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts) for providing S. cerevisiae K616 and K601 strains. We are grateful to Dr. M. Beltrame and Dr. L. Popolo (Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Italy) for suggestions about yeast handling and to Prof. R. Jennings (Dipartimento di Biologia, Università di Milano, Italy) for kindly revising the English manuscript. This project was supported by the Italian Ministry for Instruction, University and Research in the COFIN 2000 frame.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ida De Michelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonza, M.C., Luoni, L. & De Michelis, M.I. Functional expression in yeast of an N-deleted form of At-ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana, and characterization of a hyperactive mutant. Planta 218, 814–823 (2004). https://doi.org/10.1007/s00425-003-1160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1160-y

Keywords

Navigation