Skip to main content
Log in

Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance?

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Reactive oxygen intermediates (ROIs) such as hydrogen peroxide (H2O2) and the superoxide anion radical (O2 ·−) accumulate in many plants during attack by microbial pathogens. Despite a huge number of studies, the complete picture of the role of ROIs in the host–pathogen interaction is not yet fully understood. This situation is reflected by the controversially discussed question as to whether ROIs are key factors in the establishment and maintenance of either host cell inaccessibility or accessibility for fungal pathogens. On the one hand, ROIs have been implicated in signal transduction as well as in the execution of defence reactions such as cell wall strengthening and a rapid host cell death (hypersensitive reaction). On the other hand, ROIs accumulate in compatible interactions, and there are reports suggesting a function of ROIs in restricting the spread of leaf lesions and thus in suppressing cell death. Moreover, in situ analyses have demonstrated that different ROIs may trigger opposite effects in plants depending on their spatiotemporal distribution and subcellular concentrations. This demonstrates the need to determine the particular role of individual ROIs in distinct stages of pathogen development. The well-studied interaction of cereals with fungi from the genus Blumeria is an excellent model system in which signal transduction and defence reactions can be further elucidated in planta. This review article gives a synopsis of the role of ROI accumulation, with particular emphasis on the pathosystem Hordeum vulgare L.–Blumeria graminis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–H.
Fig. 2.

Similar content being viewed by others

Abbreviations

Avr-gene:

avirulence gene

CWA:

cell wall apposition

DAB:

3,3-diaminobenzidine

HR:

hypersensitive reaction

NBT:

nitroblue tetrazolium

R-gene:

resistance gene

Rar :

gene required for Mla12-specified resistance

ROI:

reactive oxygen intermediate

ROP:

RHO (RAS—rat sarkome oncogene product—homologue) of plants

Ror :

gene required for mlo-specified resistance

SA:

salicylic acid

References

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer P-J, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    CAS  PubMed  Google Scholar 

  • Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    CAS  PubMed  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  CAS  Google Scholar 

  • Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    CAS  Google Scholar 

  • Bestwick CS, Brown I, Bennett MHR, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9:209–221

    Article  CAS  PubMed  Google Scholar 

  • Bestwick CS, Brown IR, Mansfield JW (1998) Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol 118:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    CAS  PubMed  Google Scholar 

  • Bokoch GM (1995) Regulation of the phagocyte respiratory burst by small GTP-binding proteins. Trends Cell Biol 5:109–113

    Article  CAS  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel rapid defense response. Cell 70:21–30

    CAS  PubMed  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    CAS  Google Scholar 

  • Brown I, Trethowan J, Kerry M, Mansfield J, Bolwell GP (1998) Localization of components of the oxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during the interaction between non-pathogenic strains of Xanthomonas campestris and French bean mesophyll cells. Plant J 15:333–343

    Article  CAS  Google Scholar 

  • Burhenne K, Gregersen PL (2000) Up-regulation of the ascorbate-dependent antioxidative system in barley leaves during powdery mildew infection. Mol Plant Pathol 1:303–314

    Article  CAS  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    PubMed  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    CAS  PubMed  Google Scholar 

  • Carver TLW, Zeyen RJ, Bushnell WR, Robbins MP (1994) Inhibition of phenylalanine ammonia lyase and cinnamyl-alcohol dehydrogenase increases quantitative susceptibility of barley to powdery mildew (Erysiphe graminis DC). Physiol Mol Plant Pathol 44:261–272

    CAS  Google Scholar 

  • Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, van Montagu M, Inzé D, van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95:5818–5823

    Article  CAS  PubMed  Google Scholar 

  • Clément MV, Ponton A, Pervaiz S (1998) Apoptosis induced by hydrogen peroxide is mediated by decreased superoxide anion concentration and reduction of intracellular milieu. FEBS Lett 440:13–18

    Article  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, del Rio LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    CAS  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    CAS  PubMed  Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localisation, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004

    CAS  PubMed  Google Scholar 

  • Dorey S, Kopp M, Geoffroy P, Fritig B, Kauffmann S (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiol 121:163–171

    Article  CAS  PubMed  Google Scholar 

  • El Benna J, Ruedi JM, Babior BM (1994) Cytosolic guanine nucleotide-binding protein Rac2 operates in vivo as a component of the neutrophil respiratory burst oxidase. Transfer of Rac2 and the cytosolic oxidase components p47phox and p67phox to the submembranous actin cytoskeleton during oxidase activation. J Biol Chem 269:6729–6734

    PubMed  Google Scholar 

  • Elstner EF, Osswald W (1994) Mechanisms of oxygen activation during plant stress. Proc R Soc Edinburgh Sect B 102:131–154

    Google Scholar 

  • El-Zahaby HM, Gullner G, Király Z (1995) Effect of powdery mildew infection of barley on the ascorbate-glutathione cycle and other antioxidants in different host-pathogen interactions. Phytopathology 85:1225–1230

    CAS  Google Scholar 

  • Fodor J, Hideg E, Kecskés A, Király Z (2001) In vivo detection of tobacco mosaic virus-induced local and systemic oxidative burst by electron paramagnetic resonance spectroscopy. Plant Cell Physiol. 42:775–779

    Google Scholar 

  • Freialdenhoven A, Scherag B, Hollricher K, Collinge DB, Thordal-Christensen H, Schulze-Lefert P (1994) Nar-1 and Nar-2, two loci required for Mla12-specified race-specific resistance to powdery mildew in barley. Plant Cell 6:983–994

    CAS  Google Scholar 

  • Freialdenhoven A, Peterhänsel C, Kurth J, Kreuzaler F, Schulze-Lefert P (1996) Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell 8:5–14

    Article  CAS  PubMed  Google Scholar 

  • Glazener JA, Orlandi EW, Baker CJ (1996) The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiol 110:759–763

    CAS  PubMed  Google Scholar 

  • Görg R, Hollricher K, Schulze-Lefert P (1993) Functional analysis and RFLP-mediated mapping of the Mlg resistance locus in barley. Plant J 3:857–866

    Article  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–30

    Google Scholar 

  • Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosak KE, Robinson NJ, Jones JDG (1996) RbohA, a rice homologue of mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522

    Article  CAS  PubMed  Google Scholar 

  • Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P. (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25:335–348

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene dependent plant defence responses. Plant Cell 8:1773–1791

    CAS  Google Scholar 

  • Hassanain HH, Sharma YK, Moldovan L, Khramtsov V, Berliner LJ, Duvick JP, Goldschmidt-Clermont PJ. (2000) Plant rac proteins induce superoxide production in mammalian cells. Biochem Biophys Res Commun 272:783–788

    Article  CAS  PubMed  Google Scholar 

  • Hückelhoven R, Kogel KH (1998) Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis fsp hordei). Mol Plant Microbe Interact 11:292–300

    Google Scholar 

  • Hückelhoven R, Fodor J, Preis C, Kogel K-H (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation. Plant Physiol 119:1251–1260

    Article  PubMed  Google Scholar 

  • Hückelhoven R, Fodor J, Trujillo M, Kogel K-H (2000a) Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta 212:16–24

    Article  PubMed  Google Scholar 

  • Hückelhoven R, Trujillo M, Kogel K-H (2000b) Mutations in Ror1 and Ror2 genes cause modification of hydrogen peroxide accumulation in mlo-barley under attack from the powdery mildew fungus. Mol Plant Pathol 1:287–292

    Article  Google Scholar 

  • Hückelhoven R, Dechert C, Trujillo M, Kogel K-H (2001a) Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines inoculated with the powdery mildew fungus. Plant Mol Biol 47:739–748

    PubMed  Google Scholar 

  • Hückelhoven R, Dechert C, Kogel K-H (2001b) Non-host resistance of barley is associated with a hydrogen peroxide burst at sites of attempted penetration by wheat powdery mildew fungus. Mol Plant Pathol 2:199–205

    Article  Google Scholar 

  • Ichinose Y, Andi S, Doi R, Tanaka R, Taguchi F, Sasabe M, Toyoda K, Shiraishi T, Yamada T (2001) Generation of hydrogen peroxide is not required for harpin-induced apoptotic cell death in tobacco BY-2 cell suspension culture. Plant Physiol Biochem 39:771–776

    Article  CAS  Google Scholar 

  • Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearch ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ (1997) Mitogenic signaling mediated by oxidants in ras-transformed fibroblasts. Science 275:1649–1652

    Article  CAS  PubMed  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    CAS  PubMed  Google Scholar 

  • Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion-fluxes and O2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94:4800–4805

    CAS  PubMed  Google Scholar 

  • Jarosch B, Kogel K-H, Schaffrath U (1999) The ambivalence of the barley Mlo Locus: mutations conferring resistance against powdery mildew (Blumeria graminis f.sp. hordei) enhance susceptibility to the rice blast fungus Magnaporte grisea. Mol Plant Microbe Interact 12:508–514

    CAS  Google Scholar 

  • Jørgensen JH (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119

    Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91(phox) subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    Google Scholar 

  • Kerby K, Somerville S (1992) Purification of an infection-related, extracellular peroxidase from barley. Plant Physiol 100:397–402

    CAS  Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002a) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–451

    Article  CAS  PubMed  Google Scholar 

  • Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS, Chung WS, Moon BC, Kang CH, Park CY, Yoo JH, Kang YH, Koo SC, Koo YD, Jung JC, Kim ST, Schulze-Lefert P, Lee SY, Cho MJ (2002b) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. J Biol Chem 277:19304–19314

    Article  CAS  PubMed  Google Scholar 

  • Kita N, Toyoda H, Shishiyama J (1981) Chronological analysis of cytological responses in powdery-mildewed barley leaves. Can J Bot 59:1761–1768

    Google Scholar 

  • Kliebenstein DJ, Dietrich RA, Martin AC, Last RL, Dangl JL (1999) LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Mol Plant Microbe Interact 12:1022–1026

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537

    CAS  Google Scholar 

  • Koga H, Bushnell WR, Zeyen RJ (1990) Specificity of cell type and timing of events associated with papilla formation and the hypersensitive reaction in leaves of Hordeum vulgare attacked by Erysiphe graminis fsp hordei. Can J Bot 68:2344–2352

    Google Scholar 

  • Kogel K-H, Hückelhoven R (1999) Superoxide generation in chemically activated resistance of barley in response to powdery mildew inoculation. J Phytopathol 147:1–4

    Article  CAS  Google Scholar 

  • Kogel K-H, Beckhove U, Dreschers J, Münch S, Rommé Y (1994) Acquired resistance in barley: the resistance mechanism induced by 2,6-dichloroisonicotinic acid is a phenocopy of a genetically based mechanism governing race-specific powdery mildew resistance. Plant Physiol 106:1269–1277

    CAS  Google Scholar 

  • Kroj T, Rudd JJ, Nürnberger T, Gäbler Y, Lee J, Scheel D (2002) Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. J Biol Chem 278:2256–2264

    Google Scholar 

  • Kumar J, Hückelhoven R, Beckhove U, Nagarajan S, Kogel K-H (2001) A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–133

    Google Scholar 

  • Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K-H (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3:185–195

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    CAS  PubMed  Google Scholar 

  • Lyngkjaer MF, Carver TLW (1999) Modification of mlo5 resistance to Blumeria graminis attack in barley as a consequence of induced accessibility and inaccessibility. Physiol Mol Plant Pathol 55:163–174

    Article  Google Scholar 

  • Lyngkjaer MF, Carver TLW (2000) Conditioning of cellular defence responses to powdery mildew in cereal leaves by prior attack. Mol Plant Pathol 1:41–49

    Article  Google Scholar 

  • McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534

    Article  CAS  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J 29:257–268

    Article  CAS  PubMed  Google Scholar 

  • Morel F, Doussiere J, Vignais PV (1991) The superoxide-generating oxidase of phagocytic cells: physiological, molecular and pathological aspects. Eur J Biochem 201:523–546

    CAS  PubMed  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2002) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    Article  Google Scholar 

  • Naton B, Hahlbrock K, Schmelzer E (1996) Correlation of rapid cell death with metabolic changes in fungus infected, cultured parsley cells. Plant Physiol 112:433–444

    CAS  PubMed  Google Scholar 

  • Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4:887–892

    Article  CAS  Google Scholar 

  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 98:759–764

    Article  CAS  PubMed  Google Scholar 

  • Ouchi S, Oku H, Hibino C, Akiyama I (1974) Induction of accessibility and resistance in leaves of barley by some races of Erysiphe graminis. Phytopathol Z 79:24–34

    Google Scholar 

  • Park J, Choi HJ, Lee S, Lee T, Yang Z, Lee Y (2000) Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol 124:725–732

    Google Scholar 

  • Peterhänsel C, Freialdenhoven A, Kurth J, Kolsch R, Schulze-Lefert P (1997) Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 9:1397–1409

    Article  PubMed  Google Scholar 

  • Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–85.

    Article  CAS  PubMed  Google Scholar 

  • Pryce-Jones E, Carver T, Gurr S (1999) The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f.sp. hordei. Physiol Mol Plant Pathol 55:175–182

    CAS  Google Scholar 

  • Romeis T, Tang S, Hammond-Kosack K, Piedras P, Blatt M, Jones JDG (2000) Early signalling events in the Avr9/Cf-9-dependent plant defence response. Mol Plant Pathol 1:3–8

    Article  CAS  Google Scholar 

  • Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner H-Y, Johnson J, Delaney TP, Jesse T, Vos P, Uknes S (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IκB. Plant Cell 9:425–439

    CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox) NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Google Scholar 

  • Schultheiss H, Dechert C, Kogel K-H, Hückelhoven R (2002) A small GTP-binding host protein is required for entry of Blumeria graminis f.sp. hordei into barley epidermal cells. Plant Physiol 128:1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Lefert P, Vogel J (2000) Closing the ranks to attack by powdery mildew. Trends Plant Sci 5:343–348

    CAS  PubMed  Google Scholar 

  • Schweizer P, Pokorny J, Abderhalden O, Dudler R (1999a) A transient assay system for the functional assessment of defense-related genes in wheat. Mol Plant Microbe Interact 12:647–654

    CAS  Google Scholar 

  • Schweizer P, Christoffel A, Dudler R (1999b) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J. 20:541–552

    Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895–903

    Article  CAS  PubMed  Google Scholar 

  • Scott-Craig JS, Kerby KB, Stein BD, Somerville SC (1995) Expression of an extracellular peroxidase that is induced in barley (Hordeum vulgare) by the powdery mildew pathogen (Erysiphe graminis f.sp. hordei). Physiol Mol Plant Pathol 47:407–418

    Article  CAS  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar K, Dixon RA, Lamb C (1997) Salicylic acid potentiates an antagonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Lahaye T, Tan M-W, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366

    CAS  PubMed  Google Scholar 

  • Stein M, Somerville S (2002) MLO, a novel modulator of plant defenses and cell death, binds calmodulin. Trends Plant Sci 7:379–380

    Article  CAS  PubMed  Google Scholar 

  • Stolzenburg MC, Aist JR, Israel HW (1984) The role of papillae in resistance to powdery mildew conditioned by the ml-o gene in barley. I. Correlative evidence. Physiol Plant Pathol 25:337–346

    Google Scholar 

  • Thordal-Christensen H, Smedegaard-Petersen V (1988) Comparison of resistance-inducing abilities of virulent and avirulent races of Erysiphe graminis f.sp. hordei and a race of Erysiphe graminis f.sp. tritici in barley. Plant Pathol 37:20–27

    Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    CAS  Google Scholar 

  • Thordal-Christensen H, Gregersen PL, Collinge DB (1999) The barley/Blumeria (sy. Erysiphe) graminis interaction. In: Mechanisms of resistance to plant diseases. Slusarenko A, Fraser R, van Loon K (eds) Kluwer, Dordrecht, pp 77–100

  • Torp J, Jørgensen JH (1986) Modification of barley powdery mildew resistance gene Ml-a12 by induced mutations. Can J Genet Cytol 28:725–731

    Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    CAS  PubMed  Google Scholar 

  • Vallélian-Bindschedler L, Schweizer P, Mosinger E, Métraux JP (1998a) Heat-induced resistance in barley to powdery mildew (Blumeria graminis fsp hordei) is associated with a burst of active oxygen species. Physiol Mol Plant Pathol 52:185–199

    Article  Google Scholar 

  • Vallélian-Bindschedler L, Métraux J-P, Schweizer P (1998b) Salicylic acid accumulation in barley is pathogen specific but not required for defense-gene activation. Mol Plant Microbe Interact 11:702–705

    Google Scholar 

  • Vanacker H, Carver TLW, Foyer C (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley–powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Von Röpenack E, Parr A, Schulze-Lefert P (1998) Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem 272:9013–9022

    Google Scholar 

  • Von Tiedemann A (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol Mol Plant Pathol 50:151–166

    Article  PubMed  Google Scholar 

  • Wäspi U, Schweizer P, Dudler R (2001) Syringolin reprograms wheat to undergo hypersensitive cell death in a compatible interaction with powdery mildew. Plant Cell 13:153–161

    Article  PubMed  Google Scholar 

  • Wei Y, Zhang Z, Andersen, CH, Schmelzer E, Gregersen PL, Collinge DB, Smedegaard-Petersen V, Thordal-Christensen H (1998) An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol Biol 36:101–112

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    CAS  PubMed  Google Scholar 

  • Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW. (2000) Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat Struct Biol 7:1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, León J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115:427–435

    CAS  PubMed  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell [Suppl] 2002:375–388

  • Zeyen RJ, Ahlstrand GG, Carver TLW (1993) X-ray microanalysis of frozen-hydrated, freeze-dried, and critical point dried leaf specimens: determination of soluble and insoluble chemical elements at Erysiphe graminis epidermal cell papilla sites in barley isolines containing Ml-o and ml-o alleles. Can J Bot 71:284–296

    CAS  Google Scholar 

  • Zhang Z, Collinge DB, Thordal-Christensen H (1995) Germin-like oxalate oxidase a H2O2-producing enzyme accumulates in barley attacked by the powdery mildew fungus. Plant J 8:139–145

    Article  CAS  Google Scholar 

  • Zhou F, Zhang Z, Gregersen PL, Mikkelsen JD, de Neergaard E, Collinge DB, Thordal-Christensen H (1998) Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 117:33–41

    CAS  PubMed  Google Scholar 

  • Zhou F, Andersen CH, Burhenne K, Fischer PH, Collinge DB, Thordal-Christensen H (2000) Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley–powdery mildew interaction. Plant J 23:245–254

    Google Scholar 

Download references

Acknowledgements

We apologize that not all work about powdery mildew resistance and ROIs could be cited in this review. We are grateful to Hans Thordal-Christensen and Bavita Asthir for providing unpublished results. Laboratory work in the group of R. Hückelhoven is supported by the Deutsche Forschungsgemeinschaft and Deutscher Akademischer Austauschdienst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Hückelhoven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hückelhoven, R., Kogel, KH. Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance?. Planta 216, 891–902 (2003). https://doi.org/10.1007/s00425-003-0973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-0973-z

Keywords

Navigation