Skip to main content

Advertisement

Log in

Regulation of CaV3.2 channels by the receptor for activated C kinase 1 (Rack-1)

  • Original Article
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

A Correction to this article was published on 21 October 2021

This article has been updated

Abstract

This study describes the interaction between CaV3.2 calcium channels and the receptor for activated C kinase 1 (Rack-1), a scaffold protein which has recently been implicated in neuropathic pain. The coexpression of CaV3.2 and Rack-1 in tsA-201 cells led to a reduction in the magnitude of whole-cell CaV3.2 currents and CaV3.2 channel expression at the plasma membrane. Co-immunoprecipitations from transfected cells show the formation of a molecular protein complex between Cav3.2 channels and Rack-1. We determined that the interaction of Rack-1 occurs at the intracellular II–III loop and the C-terminus of the channel. Finally, the coexpression of PKCβII abolished the effect of Rack-1 on current densities. Altogether, our findings show that Rack-1 regulates CaV3.2-mediated calcium entry in a PKC-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used in our study is available from the authors on reasonable request.

Code availability

Not applicable

Change history

Abbreviations

Rack-1:

Receptor for activated C kinase 1

PKC:

Protein kinase C

DECA:

Dequalinium chloride

NMDAR:

N-Methyl-d-aspartate receptors

GABAAR:

Gamma-aminobutyric-acid A receptor

References

  1. Adams DR, Ron D, Kiely PA (2011) RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22. https://doi.org/10.1186/1478-811X-9-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ashique AM, Kharazia V, Yaka R, Phamluong K, Peterson AS, Ron D (2006) Localization of the scaffolding protein RACK1 in the developing and adult mouse brain. Brain Res 1069:31–38. https://doi.org/10.1016/j.brainres.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  3. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284. https://doi.org/10.1016/j.cell.2009.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blesneac I, Chemin J, Bidaud I, Huc-Brandt S, Vandermoere F, Lory P (2015) Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci U S A 112:13705–13710. https://doi.org/10.1073/pnas.1511740112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW (2014) Calcium-permeable ion channels in pain signaling. Physiol Rev 94:81–140. https://doi.org/10.1152/physrev.00023.2013

    Article  CAS  PubMed  Google Scholar 

  6. Brandon NJ, Jovanovic JN, Smart TG, Moss SJ (2002) Receptor for activated C kinase-1 facilitates protein kinase C-dependent phosphorylation and functional modulation of GABAA receptors with the activation of G-protein-coupled receptors. J Neurosci 22(6353–6361):20026649

    Google Scholar 

  7. Brandon NJ, Uren JM, Kittler JT, Wang H, Olsen R, Parker PJ, Moss SJ (1999) Subunit-specific association of protein kinase C and the receptor for activated C kinase with GABA type A receptors. J Neurosci 19:9228–9234

    Article  CAS  Google Scholar 

  8. Candelas M, Reynders A, Arango-Lievano M, Neumayer C, Fruquiere A, Demes E, Hamid J, Lemmers C, Bernat C, Monteil A, Compan V, Laffray S, Inquimbert P, Le Feuvre Y, Zamponi GW, Moqrich A, Bourinet E, Mery PF (2019) Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci Rep 9:3112. https://doi.org/10.1038/s41598-019-39703-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain. Nat Rev Dis Primers 3:17002. https://doi.org/10.1038/nrdp.2017.2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cox EA, Bennin D, Doan AT, O’Toole T, Huttenlocher A (2003) RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol Biol Cell 14:658–669. https://doi.org/10.1091/mbc.e02-03-0142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ficelova V, Souza IA, Cmarko L, Gandini MA, Stringer RN, Zamponi GW, Weiss N (2020) Functional identification of potential non-canonical N-glycosylation sites within Cav3.2 T-type calcium channels. Mol Brain 13:149. https://doi.org/10.1186/s13041-020-00697-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaifullina AS, Lazniewska J, Gerasimova EV, Burkhanova GF, Rzhepetskyy Y, Tomin A, Rivas-Ramirez P, Huang J, Cmarko L, Zamponi GW, Sitdikova GF, Weiss N (2019) A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain 160:2798–2810. https://doi.org/10.1097/j.pain.0000000000001669

    Article  CAS  PubMed  Google Scholar 

  13. Gandini MA, Sandoval A, Felix R (2014) Whole-cell patch-clamp recording of recombinant voltage-sensitive Ca2+ channels heterologously expressed in HEK-293 cells. Cold Spring Harb Protoc 2014:396–401. https://doi.org/10.1101/pdb.prot073213

    Article  PubMed  Google Scholar 

  14. Gandini MA, Souza IA, Ferron L, Innes AM, Zamponi GW (2021) The de novo CACNA1A pathogenic variant Y1384C associated with hemiplegic migraine, early onset cerebellar atrophy and developmental delay leads to a loss of Cav2.1 channel function. Mol Brain 14:27. https://doi.org/10.1186/s13041-021-00745-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, Deage M, Francois A, Bourinet E, Zamponi GW (2014) The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 83:1144–1158. https://doi.org/10.1016/j.neuron.2014.07.036

    Article  CAS  PubMed  Google Scholar 

  16. Gomez K, Calderon-Rivera A, Sandoval A, Gonzalez-Ramirez R, Vargas-Parada A, Ojeda-Alonso J, Granados-Soto V, Delgado-Lezama R, Felix R (2020) Cdk5-dependent phosphorylation of CaV3.2 T-type channels: possible role in nerve ligation-induced neuropathic allodynia and the compound action potential in primary afferent C fibers. J Neurosci 40:283–296. https://doi.org/10.1523/JNEUROSCI.0181-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Isacson CK, Lu Q, Karas RH, Cox DH (2007) RACK1 is a BKCa channel binding protein. Am J Physiol Cell Physiol 292:C1459-1466. https://doi.org/10.1152/ajpcell.00322.2006

    Article  CAS  PubMed  Google Scholar 

  18. Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM (2008) Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99:3151–3156. https://doi.org/10.1152/jn.01031.2007

    Article  CAS  PubMed  Google Scholar 

  19. Lazniewska J, Rzhepetskyy Y, Zhang FX, Zamponi GW, Weiss N (2016) Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression. Pflugers Arch 468:1837–1851. https://doi.org/10.1007/s00424-016-1881-y

    Article  CAS  PubMed  Google Scholar 

  20. Lu R, Fan B, Yin D, Li Y, Wang B, Zhu S, Chen Y, Xu Z (2019) Receptor for activated C kinase 1 mediates the chronic constriction injury-induced neuropathic pain in the rats’ peripheral and central nervous system. Neurosci Lett 712:134477. https://doi.org/10.1016/j.neulet.2019.134477

    Article  CAS  PubMed  Google Scholar 

  21. Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR, Todorovic SM, Jevtovic-Todorovic V (2009) In vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145:184–195. https://doi.org/10.1016/j.pain.2009.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164. https://doi.org/10.1016/s0301-0082(98)00048-3

    Article  CAS  PubMed  Google Scholar 

  23. Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, Mushinski JF (1993) Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 268:20110–20115

    Article  CAS  Google Scholar 

  24. Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee SS, Rose KE, Poiro N, Digruccio MR, Krishnan K, Covey DF, Lee JH, Barrett PQ, Jevtovic-Todorovic V, Todorovic SM (2013) Reversal of neuropathic pain in diabetes by targeting glycosylation of Ca(V)3.2 T-type calcium channels. Diabetes 62:3828–3838. https://doi.org/10.2337/db13-0813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rangel A, Sanchez-Armass S, Meza U (2010) Protein kinase C-mediated inhibition of recombinant T-type Cav3.2 channels by neurokinin 1 receptors. Mol Pharmacol 77:202–210. https://doi.org/10.1124/mol.109.058727

    Article  CAS  PubMed  Google Scholar 

  26. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A 91:839–843. https://doi.org/10.1073/pnas.91.3.839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ron D, Jiang Z, Yao L, Vagts A, Diamond I, Gordon A (1999) Coordinated movement of RACK1 with activated betaIIPKC. J Biol Chem 274:27039–27046. https://doi.org/10.1074/jbc.274.38.27039

    Article  CAS  PubMed  Google Scholar 

  28. Rotenberg SA, Sun XG (1998) Photoinduced inactivation of protein kinase C by dequalinium identifies the RACK-1-binding domain as a recognition site. J Biol Chem 273:2390–2395. https://doi.org/10.1074/jbc.273.4.2390

    Article  CAS  PubMed  Google Scholar 

  29. Scanzi J, Accarie A, Muller E, Pereira B, Aissouni Y, Goutte M, Joubert-Zakeyh J, Picard E, Boudieu L, Mallet C, Gelot A, Ardid D, Carvalho FA, Dapoigny M (2016) Colonic overexpression of the T-type calcium channel Cav 3.2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients. Neurogastroenterol Motil 28:1632–1640. https://doi.org/10.1111/nmo.12860

    Article  CAS  PubMed  Google Scholar 

  30. Snutch TP, Zamponi GW (2018) Recent advances in the development of T-type calcium channel blockers for pain intervention. Br J Pharmacol 175:2375–2383. https://doi.org/10.1111/bph.13906

    Article  CAS  PubMed  Google Scholar 

  31. Stebbins EG, Mochly-Rosen D (2001) Binding specificity for RACK1 resides in the V5 region of beta II protein kinase C. J Biol Chem 276:29644–29650. https://doi.org/10.1074/jbc.M101044200

    Article  CAS  PubMed  Google Scholar 

  32. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    Article  CAS  Google Scholar 

  33. Todorovic SM, Jevtovic-Todorovic V (2011) T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br J Pharmacol 163:484–495. https://doi.org/10.1111/j.1476-5381.2011.01256.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Waxman SG, Zamponi GW (2014) Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 17:153–163. https://doi.org/10.1038/nn.3602

    Article  CAS  PubMed  Google Scholar 

  35. Weiss N, Black SA, Bladen C, Chen L, Zamponi GW (2013) Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 465:1159–1170. https://doi.org/10.1007/s00424-013-1259-3

    Article  CAS  PubMed  Google Scholar 

  36. Weiss N, Hameed S, Fernandez-Fernandez JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287:2810–2818. https://doi.org/10.1074/jbc.M111.290882

    Article  CAS  PubMed  Google Scholar 

  37. Woolf CJ, American College of Physicians, American Physiological Society (2004) Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med 140:441–451. https://doi.org/10.7326/0003-4819-140-8-200404200-00010

    Article  PubMed  Google Scholar 

  38. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769. https://doi.org/10.1126/science.288.5472.1765

    Article  CAS  PubMed  Google Scholar 

  39. Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclase-activating polypeptide (PACAP(1–38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem 278:9630–9638. https://doi.org/10.1074/jbc.M209141200

    Article  CAS  PubMed  Google Scholar 

  40. Yaka R, Phamluong K, Ron D (2003) Scaffolding of Fyn kinase to the NMDA receptor determines brain region sensitivity to ethanol. J Neurosci 23:3623–3632

    Article  CAS  Google Scholar 

  41. Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D (2002) NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci U S A 99:5710–5715. https://doi.org/10.1073/pnas.062046299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Wang Q, Zheng W, Tuli J, Li Q, Wu Y, Hussein S, Dai XQ, Shafiei S, Li XG, Shen PY, Tu JC, Chen XZ (2012) Receptor for activated C kinase 1 (RACK1) inhibits function of transient receptor potential (TRP)-type channel Pkd2L1 through physical interaction. J Biol Chem 287:6551–6561. https://doi.org/10.1074/jbc.M111.305854

    Article  CAS  PubMed  Google Scholar 

  43. Zhu X, Liu Y, Huang H, Zhang Y, Huang S, Zhou W, Bian X, Shen S, Cao S (2018) PKCbetaII-induced upregulation of PGP9.5 and VEGF in postoperative persistent pain in rats. J Pain Res 11:2095–2106. https://doi.org/10.2147/JPR.S144852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Lina Chen for her technical support. We thank Dr. Anna Huttenlocher for the pEGFP-N1-RACK1 plasmid and Dr. Frederic Mushinski for the MTH PKC beta II plasmid. We also thank Dr. Norbert Weiss for providing the GFP channel fusion constructs and Dr. Said M’Dahoma for early participation in this project.

Funding

This work was supported by a Foundation Grant from the Canadian Institutes of Health Research (CIHR) to GWZ. MAG held a postdoctoral fellowship from CIHR. GWZ is a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Contributions

MAG designed the study and drafted the manuscript. GWZ supervised the study and co-wrote the manuscript. MAG, IAS, EG, and AK performed the experiments and data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gerald W. Zamponi.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Nociception in Pflügers Archiv—European Journal of Physiology

The original online version of this article was revised: Originally, the article has been published online with spelling error in author name. Abhishek Kullar should be change to Abhishek Khullar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandini, M.A., Souza, I.A., Khullar, A. et al. Regulation of CaV3.2 channels by the receptor for activated C kinase 1 (Rack-1). Pflugers Arch - Eur J Physiol 474, 447–454 (2022). https://doi.org/10.1007/s00424-021-02631-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02631-1

Keywords

Navigation