Skip to main content

Advertisement

Log in

Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to—and relieves inhibition of—PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9–1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson GR, Posokhova E, Martemyanov KA (2009) The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys 54:33–46. https://doi.org/10.1007/s12013-009-9052-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arshavsky VY, Bownds MD (1992) Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357:416–417. https://doi.org/10.1038/357416a0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arshavsky VY, Burns ME (2014) Current understanding of signal amplification in phototransduction. Cell Logist 4:e29390. https://doi.org/10.4161/cl.29390

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arshavsky VY, Dumke CL, Bownds MD (1992) Noncatalytic cGMP binding sites of amphibian rod cGMP phosphodiesterase control interaction with its inhibitory γ-subunits. A putative regulatory mechanism of the rod photoresponse. J Biol Chem 267:24501–24507

    Article  CAS  PubMed  Google Scholar 

  6. Arshavsky VY, Lamb TD, Pugh EN (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187. https://doi.org/10.1146/annurev.physiol.64.082701.102229

    Article  CAS  PubMed  Google Scholar 

  7. Arshavsky VY, Wensel TG (2013) Timing is everything: GTPase regulation in phototransduction. Invest Ophthalmol Vis Sci 54:7725–7733. https://doi.org/10.1167/iovs.13-13281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Artemyev NO, Mills JS, Thornburg KR, Knapp DR, Schey KL, Hamm HE (1993) A site on transducin α–subunit of interaction with the polycationic region of cGMP phosphodiesterase inhibitory subunit. J Biol Chem 268:23611–23615

    Article  CAS  PubMed  Google Scholar 

  9. Baillie GS, Tejeda GS, Kelly MP (2019) Therapeutic targeting of 3,5-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 18:770–796. https://doi.org/10.1038/s41573-019-0033-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bakail M, Ochsenbein F (2016) Targeting protein–protein interactions, a wide open field for drug design. Comptes Rendus Chimie 19:19–27. https://doi.org/10.1016/j.crci.2015.12.004

    Article  CAS  Google Scholar 

  11. Baker SA, Martemyanov KA, Shavkunov AS, Arshavsky VY (2006) Kinetic mechanism of RGS9–1 potentiation by R9AP. Biochemistry 45:10690–10697. https://doi.org/10.1021/bi060376a

    Article  CAS  PubMed  Google Scholar 

  12. Barren B, Gakhar L, Muradov H, Boyd KK, Ramaswamy S, Artemyev NO (2009) Structural basis of phosphodiesterase 6 inhibition by the C-terminal region of the gamma-subunit. EMBO J 28:3613–3622. https://doi.org/10.1038/emboj.2009.284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beavo JA, Francis SH, Houslay MD (2006) Cyclic nucleotide phosphodiesterases in health and disease. CRC Press, Boca Raton

    Book  Google Scholar 

  14. Bennett N, Clerc A (1989) Activation of cGMP phosphodiesterase in retinal rods: mechanism of interaction with the GTP-binding protein (transducin). Biochemistry 28:7418–7424. https://doi.org/10.1021/bi00444a040

    Article  CAS  PubMed  Google Scholar 

  15. Bernier SC, Horchani H, Salesse C (2015) Structure and binding of the C-terminal segment of R9AP to lipid monolayers. Langmuir 31:1967–1979. https://doi.org/10.1021/la503867h

    Article  CAS  PubMed  Google Scholar 

  16. Bigay J, Deterre P, Pfister C, Chabre M (1987) Fluoride complexes of aluminium or beryllium act on G-proteins as reversibly bound analogues of the γ phosphate of GTP. EMBO J 6:2907–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blackshaw S, Snyder SH (1997) Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J Neurosci 17:8074–8082. https://doi.org/10.1523/JNEUROSCI.17-21-08074.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruckert F, Catty P, Deterre P, Pfister C (1994) Activation of phosphodiesterase by transducin in bovine rod outer segments: Characteristics of the successive binding of to transducins. Biochemistry 33:12625–12634. https://doi.org/10.1021/bi00208a013

    Article  CAS  PubMed  Google Scholar 

  19. Bruzzoni-Giovanelli H, Alezra V, Wolff N, Dong CZ, Tuffery P, Rebollo A (2018) Interfering peptides targeting protein-protein interactions: the next generation of drugs? Drug Discov Today 23:272–285. https://doi.org/10.1016/j.drudis.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  20. Cahill KB, Quade JH, Carleton KL, Cote RH (2012) Identification of amino acid residues responsible for the selectivity of tadalafil binding to two closely related phosphodiesterases, PDE5 and PDE6. J Biol Chem 287:41406–41416. https://doi.org/10.1074/jbc.M112.389189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calvert PD, Govardovskii VI, Arshavsky VY, Makino CL (2002) Two temporal phases of light adaptation in retinal rods. J Gen Physiol 119:129–146. https://doi.org/10.1085/jgp.119.2.129

    Article  PubMed  PubMed Central  Google Scholar 

  22. Calvert PD, Ho TW, LeFebvre YM, Arshavsky VY (1998) Onset of feedback reactions underlying vertebrate rod photoreceptor light adaptation. J Gen Physiol 111:39–51. https://doi.org/10.1085/jgp.111.1.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carcamo B, Hurwitz MY, Craft CM, Hurwitz RL (1995) The mammalian pineal expresses the cone but not the rod cyclic GMP phosphodiesterase. J Neurochem 65:1085–1092. https://doi.org/10.1046/j.1471-4159.1995.65031085.x

    Article  CAS  PubMed  Google Scholar 

  24. Chang B, Grau T, Dangel S, Hurd R, Jurklies B, Sener EC, Andreasson S, Dollfus H, Baumann B, Bolz S, Artemyev N, Kohl S, Heckenlively J, Wissinger B (2009) A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene. Proc Natl Acad Sci U S A 106:19581–19586. https://doi.org/10.1073/pnas.0907720106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheever ML, Snyder JT, Gershburg S, Siderovski DP, Harden TK, Sondek J (2008) Crystal structure of the multifunctional Gbeta5-RGS9 complex. Nat Struct Mol Biol 15:155–162. https://doi.org/10.1038/nsmb.1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheguru P, Majumder A, Artemyev NO (2015) Distinct patterns of compartmentalization and proteolytic stability of PDE6C mutants linked to achromatopsia. Mol Cell Neurosci 64:1–8. https://doi.org/10.1016/j.mcn.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  27. Cheguru P, Zhang Z, Artemyev NO (2014) The GAFa domain of phosphodiesterase-6 contains a rod outer segment localization signal. J Neurochem 129:256–263. https://doi.org/10.1111/jnc.12501

    Article  CAS  PubMed  Google Scholar 

  28. Chu F, Hogan D, Gupta R, Gao XZ, Nguyen HT, Cote RH (2019) Allosteric regulation of rod photoreceptor phosphodiesterase 6 (PDE6) elucidated by chemical cross-linking and quantitative mass spectrometry. J Mol Biol 243:3677–3689. https://doi.org/10.1016/j.jmb.2019.07.035

    Article  CAS  Google Scholar 

  29. Clerc A, Bennett N (1992) Activated cGMP phosphodiesterase of retinal rods. A complex with transducin α subunit. J Biol Chem 267:6620–6627

    Article  CAS  PubMed  Google Scholar 

  30. Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP (2020) Mouse models of inherited retinal degeneration with photoreceptor cell loss. Cells 9. https://doi.org/10.3390/cells9040931

  31. Conti M, Beavo JA (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511. https://doi.org/10.1146/annurev.biochem.76.060305.150444

    Article  CAS  PubMed  Google Scholar 

  32. Cote RH (2004) Characteristics of photoreceptor PDE (PDE6): similarities and differences to PDE5. Int J Impot Res 16:S28–S33. https://doi.org/10.1038/sj.ijir.3901212

    Article  CAS  PubMed  Google Scholar 

  33. Cote RH (2006) Photoreceptor phosphodiesterase (PDE6): a G-protein-activated PDE regulating visual excitation in rod and cone photoreceptor cells. In: Beavo JA, Francis SH, Houslay MD (eds) Cyclic Nucleotide Phosphodiesterases in Health and Disease. CRC Press, Boca Raton, pp 165–193

    Chapter  Google Scholar 

  34. Cote RH, Bownds MD, Arshavsky VY (1994) cGMP binding sites on photoreceptor phosphodiesterase: Role in feedback regulation of visual transduction. Proc Natl Acad Sci U S A 91:4845–4849. https://doi.org/10.1073/pnas.91.11.4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cote RH, Brunnock MA (1993) Intracellular cGMP concentration in rod photoreceptors is regulated by binding to high and moderate affinity cGMP binding sites. J Biol Chem 268:17190–17198

    Article  CAS  PubMed  Google Scholar 

  36. D’Amours MR, Cote RH (1999) Regulation of photoreceptor phosphodiesterase catalysis by its noncatalytic cGMP binding sites. Biochem J 340:863–869

    Article  PubMed  PubMed Central  Google Scholar 

  37. da Cruz NFS, Polizelli MU, Cezar LM, Cardoso EB, Penha F, Farah ME, Rodrigues EB, Novais EA (2020) Effects of phosphodiesterase type 5 inhibitors on choroid and ocular vasculature: A literature review. Int J Retina Vitreous 6:38. https://doi.org/10.1186/s40942-020-00241-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84:132–141. https://doi.org/10.1111/cge.12203

    Article  CAS  PubMed  Google Scholar 

  39. Daugan A, Grondin P, Ruault C, Monnier Le, de Gouville AC, Coste H, Linget JM, Kirilovsky J, Hyafil F, Labaudiniere R (2003) The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 2: 2,3,6,7,12,12a-hexahydropyrazino[1’,2’:1,6]pyrido[3,4-b]indole-1,4-dione analogues. J Med Chem 46:4533–4542. https://doi.org/10.1021/jm0300577

    Article  CAS  PubMed  Google Scholar 

  40. Dong H, Claffey KP, Brocke S, Epstein PM (2013) Expression of phosphodiesterase 6 (PDE6) in human breast cancer cells. Springerplus 2:680. https://doi.org/10.1186/2193-1801-2-680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fain GL (2011) Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase. Mol Neurobiol 44:374–382. https://doi.org/10.1007/s12035-011-8205-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91:651–690. https://doi.org/10.1152/physrev.00030.2010

    Article  CAS  PubMed  Google Scholar 

  43. Gao Y, Eskici G, Ramachandran S, Poitevin F, Seven AB, Panova O, Skiniotis G, Cerione RA (2020) Structure of the visual signaling complex between transducin and phosphodiesterase 6. Mol Cell 80:237-245.e234. https://doi.org/10.1016/j.molcel.2020.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao Y, Hu H, Ramachandran S, Erickson JW, Cerione RA, Skiniotis G (2019) Structures of the rhodopsin-transducin complex: insights into G-protein activation. Mol Cell 75:781-790.e783. https://doi.org/10.1016/j.molcel.2019.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gillespie PG, Beavo JA (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-Sepharose chromatography. J Biol Chem 263:8133–8141

    Article  CAS  PubMed  Google Scholar 

  46. Gillespie PG, Beavo JA (1989) Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948. Mol Pharmacol 36:773–781

    CAS  PubMed  Google Scholar 

  47. Goc A, Chami M, Lodowski DT, Bosshart P, Moiseenkova-Bell V, Baehr W, Engel A, Palczewski K (2010) Structural characterization of the rod cGMP phosphodiesterase 6. J Mol Biol 401:363–373. https://doi.org/10.1016/j.jmb.2010.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Golovastova MO, Bazhin AV, Philippov PP (2014) Cancer-retina antigens – a new group of tumor antigens. Biochemistry (Mosc) 79:733–739. https://doi.org/10.1134/S000629791408001X

    Article  CAS  Google Scholar 

  49. Gopalakrishna KN, Boyd K, Artemyev NO (2017) Mechanisms of mutant PDE6 proteins underlying retinal diseases. Cell Signal 37:74–80. https://doi.org/10.1016/j.cellsig.2017.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gopalakrishna KN, Boyd K, Yadav RP, Artemyev NO (2016) Aryl hydrocarbon receptor-interacting protein-like 1 is an obligate chaperone of phosphodiesterase 6 and is assisted by the gamma-subunit of its client. J Biol Chem 291:16282–16291. https://doi.org/10.1074/jbc.M116.737593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Granovsky AE, Artemyev NO (2001) A conformational switch in the inhibitory γ-subunit of PDE6 upon enzyme activation by transducin. Biochemistry 40:13209–13215. https://doi.org/10.1021/bi011127j

    Article  CAS  PubMed  Google Scholar 

  52. Granovsky AE, Natochin M, Artemyev NO (1997) The γ subunit of rod cGMP-phosphodiesterase blocks the enzyme catalytic site. J Biol Chem 272:11686–11689. https://doi.org/10.1074/jbc.272.18.11686

    Article  CAS  PubMed  Google Scholar 

  53. Gulati S, Palczewski K, Engel A, Stahlberg H, Kovacik L (2019) Cryo-EM structure of phosphodiesterase 6 reveals insights into the allosteric regulation of type I phosphodiesterases. Sci Adv 5:eaav4322. https://doi.org/10.1126/sciadv.aav4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo LW, Ruoho AE (2008) The retinal cGMP phosphodiesterase γ-subunit - a chameleon. Curr Protein Pept Sci 9:611–625. https://doi.org/10.2174/138920308786733930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gupta R, Liu Y, Wang H, Nordyke CT, Puterbaugh RZ, Cui W, Varga K, Chu F, Ke H, Vashisth H, Cote RH (2020) Structural analysis of the regulatory GAF domains of cGMP phosphodiesterase elucidates the allosteric communication pathway. J Mol Biol 432:5765–5783. https://doi.org/10.1016/j.jmb.2020.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40. https://doi.org/10.1186/1750-1172-1-40

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7. https://doi.org/10.1186/1750-1172-2-7

    Article  PubMed  PubMed Central  Google Scholar 

  58. He W, Cowan CW, Wensel TG (1998) RGS9, a GTPase accelerator for phototransduction. Neuron 20:95–102. https://doi.org/10.1016/s0896-6273(00)80437-7

    Article  PubMed  Google Scholar 

  59. He W, Lu L, Zhang X, El-Hodiri HM, Chen CK, Slep KC, Simon MI, Jamrich M, Wensel TG (2000) Modules in the photoreceptor RGS9-1-G5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. J Biol Chem 275:37093–37100. https://doi.org/10.1074/jbc.M006982200

    Article  CAS  PubMed  Google Scholar 

  60. Heikaus CC, Pandit J, Klevit RE (2009) Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure 17:1551–1557. https://doi.org/10.1016/j.str.2009.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirji N, Aboshiha J, Georgiou M, Bainbridge J, Michaelides M (2018) Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet 39:149–157. https://doi.org/10.1080/13816810.2017.1418389

    Article  CAS  PubMed  Google Scholar 

  62. Holthues H, Vollrath L (2004) The phototransduction cascade in the isolated chick pineal gland revisited. Brain Res 999:175–180. https://doi.org/10.1016/j.brainres.2003.11.059

    Article  CAS  PubMed  Google Scholar 

  63. Hu G, Wensel TG (2002) R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1. Proc Natl Acad Sci U S A 99:9755–9760. https://doi.org/10.1073/pnas.152094799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang D, Hinds TR, Martinez SE, Doneanu C, Beavo JA (2004) Molecular determinants of cGMP-binding to chicken cone photoreceptor phosphodiesterase. J Biol Chem 279:48143–48151. https://doi.org/10.1074/jbc.M404338200

    Article  CAS  PubMed  Google Scholar 

  65. Huang YY, Li Z, Cai YH, Feng LJ, Wu Y, Li X, Luo HB (2013) The molecular basis for the selectivity of tadalafil toward phosphodiesterase 5 and 6: a modeling study. J Chem Inf Model 53:3044–3053. https://doi.org/10.1021/ci400458z

    Article  CAS  PubMed  Google Scholar 

  66. Ingram NT, Sampath AP, Fain GL (2016) Why are rods more sensitive than cones? J Physiol 594:5415–5426. https://doi.org/10.1113/JP272556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Iribarne M, Masai I (2018) Do cGMP levels drive the speed of photoreceptor degeneration? Adv Exp Med Biol 1074:327–333. https://doi.org/10.1007/978-3-319-75402-4_40

    Article  CAS  PubMed  Google Scholar 

  68. Irwin MJ, Gupta R, Gao XZ, Cahill KB, Chu F, Cote RH (2019) The molecular architecture of photoreceptor phosphodiesterase 6 (PDE6) with activated G protein elucidates the mechanism of visual excitation. J Biol Chem 294:19486–19497. https://doi.org/10.1074/jbc.RA119.011002

    Article  PubMed  PubMed Central  Google Scholar 

  69. Janisch KM, Kasanuki JM, Naumann MC, Davis RJ, Lin CS, Semple-Rowland S, Tsang SH (2009) Light-dependent phosphorylation of the gamma subunit of cGMP-phophodiesterase (PDE6gamma) at residue threonine 22 in intact photoreceptor neurons. Biochem Biophys Res Commun 390:1149–1153. https://doi.org/10.1016/j.bbrc.2009.10.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kajimura N, Yamazaki M, Morikawa K, Yamazaki A, Mayanagi K (2002) Three-dimensional structure of non-activated cGMP phosphodiesterase 6 and comparison of its image with those of activated forms. J Struct Biol 139:27–38. https://doi.org/10.1016/S1047-8477(02)00502-6

    Article  CAS  PubMed  Google Scholar 

  71. Kameni Tcheudji JF, Lebeau L, Virmaux N, Maftei CG, Cote RH, Lugnier C, Schultz P (2001) Molecular organization of bovine rod cGMP-phosphodiesterase 6. J Mol Biol 310:781–791. https://doi.org/10.1006/jmbi.2001.4813

    Article  CAS  PubMed  Google Scholar 

  72. Kayık G, Tüzün NŞ, Durdagi S (2017) Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development. J Enzyme Inhib Med Chem 32:311–330. https://doi.org/10.1080/14756366.2016.1250756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keeler CE (1924) The inheritance of a retinal abnormality in white mice. Proc Natl Acad Sci 10:329–333. https://doi.org/10.1073/pnas.10.7.329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kerr NM, Danesh-Meyer HV (2009) Phosphodiesterase inhibitors and the eye. Clin Exp Ophthalmol 37:514–523. https://doi.org/10.1111/j.1442-9071.2009.02070.x

    Article  PubMed  Google Scholar 

  75. Kondkar AA, Abu-Amero KK (2019) Leber congenital amaurosis: current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res 189:107834. https://doi.org/10.1016/j.exer.2019.107834

    Article  CAS  PubMed  Google Scholar 

  76. Korenbrot JI (2012) Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Progress in Retinal Eye Research 31:442–466. https://doi.org/10.1016/j.preteyeres.2012.05.002

    Article  PubMed  Google Scholar 

  77. Krispel CM, Chen D, Melling N, Chen YJ, Martemyanov KA, Quillinan N, Arshavsky VY, Wensel TG, Chen CK, Burns ME (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51:409–416. https://doi.org/10.1016/j.neuron.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  78. Lagman D, Franzen IE, Eggert J, Larhammar D, Abalo XM (2016) Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evol Biol 16:124. https://doi.org/10.1186/s12862-016-0695-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lamb TD, Heck M, Kraft TW (2018) Implications of dimeric activation of PDE6 for rod phototransduction. Open Biol 8:180076. https://doi.org/10.1098/rsob.180076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lamb TD, Hunt DM (2017) Evolution of the vertebrate phototransduction cascade activation steps. Dev Biol 431:77–92. https://doi.org/10.1016/j.ydbio.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  81. Lamb TD, Kraft TW (2020) A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes. Open Biol 10:190241. https://doi.org/10.1098/rsob.190241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379:311–319. https://doi.org/10.1038/379311a0

    Article  CAS  PubMed  Google Scholar 

  83. Laties AM (2009) Vision disorders and phosphodiesterase type 5 inhibitors: a review of the evidence to date. Drug Saf 32:1–18. https://doi.org/10.2165/00002018-200932010-00001

    Article  CAS  PubMed  Google Scholar 

  84. Leskov IB, Klenchin VA, Handy JW, Whitlock GG, Govardovskii VI, Bownds MD, Lamb TD, Pugh EN, Arshavsky VY (2000) The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27:525–537. https://doi.org/10.1016/s0896-6273(00)00063-5

    Article  CAS  PubMed  Google Scholar 

  85. Lishko PV, Martemyanov KA, Hopp JA, Arshavsky VY (2002) Specific binding of RGS9-Gβ5L to protein anchor in photoreceptor membranes greatly enhances its catalytic activity. J Biol Chem 277:24376–24381. https://doi.org/10.1074/jbc.M203237200

    Article  CAS  PubMed  Google Scholar 

  86. Liu YT, Matte SL, Corbin JD, Francis SH, Cote RH (2009) Probing the catalytic sites and activation mechanism of photoreceptor phosphodiesterase using radiolabeled phosphodiesterase inhibitors. J Biol Chem 284:31541–31547. https://doi.org/10.1074/jbc.M109.018606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Majumder A, Pahlberg J, Muradov H, Boyd KK, Sampath AP, Artemyev NO (2015) Exchange of cone for rod phosphodiesterase 6 catalytic subunits in rod photoreceptors mimics in part features of light adaptation. J Neurosci 35:9225–9235. https://doi.org/10.1523/JNEUROSCI.3563-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martemyanov KA, Lishko PV, Calero N, Keresztes G, Sokolov M, Strissel KJ, Leskov IB, Hopp JA, Kolesnikov AV, Chen CK, Lem J, Heller S, Burns ME, Arshavsky VY (2003) The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo. J Neurosci 23:10175–10181. https://doi.org/10.1523/JNEUROSCI.23-32-10175.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martinez SE, Heikaus CC, Klevit RE, Beavo JA (2008) The structure of the GAF A domain from phosphodiesterase 6C reveals determinants of cGMP binding, a conserved binding surface, and a large cGMP-dependent conformational change. J Biol Chem 283:25913–25919. https://doi.org/10.1074/jbc.M802891200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314. https://doi.org/10.1038/nrd4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Melia TJ, Malinski JA, He F, Wensel TG (2000) Enhancement of phototransduction protein interactions by lipid surfaces. J Biol Chem 275:3535–3542. https://doi.org/10.1074/jbc.275.5.3535

    Article  CAS  PubMed  Google Scholar 

  92. Michaelides M, Li Z, Rana NA, Richardson EC, Hykin PG, Moore AT, Holder GE, Webster AR (2010) Novel mutations and electrophysiologic findings in RGS9- and R9AP-associated retinal dysfunction (Bradyopsia). Ophthalmology 117:120-127.e121. https://doi.org/10.1016/j.ophtha.2009.06.011

    Article  PubMed  Google Scholar 

  93. Min KC, Gravina SA, Sakmar TP (2000) Reconstitution of the vertebrate visual cascade using recombinant heterotrimeric transducin purified from Sf9 cells. Protein Expr Purif 20:514–526. https://doi.org/10.1006/prep.2000.1326

    Article  CAS  PubMed  Google Scholar 

  94. Molday RS, Moritz OL (2015) Photoreceptors at a glance. J Cell Sci 128:4039–4045. https://doi.org/10.1242/jcs.175687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mou H, Cote RH (2001) The catalytic and GAF domains of the rod cGMP phosphodiesterase (PDE6) heterodimer are regulated by distinct regions of its inhibitory γ subunit. J Biol Chem 276:27527–27534. https://doi.org/10.1074/jbc.M103316200

    Article  CAS  PubMed  Google Scholar 

  96. Mou H, Grazio HJ, Cook TA, Beavo JA, Cote RH (1999) cGMP binding to noncatalytic sites on mammalian rod photoreceptor phosphodiesterase is regulated by binding of its γ and δ subunits. J Biol Chem 274:18813–18820. https://doi.org/10.1074/jbc.274.26.18813

    Article  CAS  PubMed  Google Scholar 

  97. Muradov H, Boyd KK, Artemyev NO (2004) Structural determinants of the PDE6 GAF A domain for binding the inhibitory gamma-subunit and noncatalytic cGMP. Vision Res 44:2437–2444. https://doi.org/10.1016/j.visres.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  98. Muradov H, Boyd KK, Artemyev NO (2010) Rod phosphodiesterase-6 PDE6A and PDE6B subunits are enzymatically equivalent. J Biol Chem 285:39828–39834. https://doi.org/10.1074/jbc.M110.170068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Muradov H, Boyd KK, Haeri M, Kerov V, Knox BE, Artemyev NO (2009) Characterization of human cone phosphodiesterase-6 ectopically expressed in Xenopus laevis rods. J Biol Chem 284:32662–32669. https://doi.org/10.1074/jbc.M109.049916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Naeem MA, Chavali VR, Ali S, Iqbal M, Riazuddin S, Khan SN, Husnain T, Sieving PA, Ayyagari R, Riazuddin S, Hejtmancik JF, Riazuddin SA (2012) GNAT1 associated with autosomal recessive congenital stationary night blindness. Invest Ophthalmol Vis Sci 53:1353–1361. https://doi.org/10.1167/iovs.11-8026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Natochin M, Granovsky AE, Artemyev NO (1998) Identification of effector residues on photoreceptor G protein, transducin. J Biol Chem 273:21808–21815. https://doi.org/10.1074/jbc.273.34.21808

    Article  CAS  PubMed  Google Scholar 

  102. Nikolova S, Guenther A, Savai R, Weissmann N, Ghofrani HA, Konigshoff M, Eickelberg O, Klepetko W, Voswinckel R, Seeger W, Grimminger F, Schermuly RT, Pullamsetti SS (2010) Phosphodiesterase 6 subunits are expressed and altered in idiopathic pulmonary fibrosis. Respir Res 11:146. https://doi.org/10.1186/1465-9921-11-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Norton AW, D’Amours MR, Grazio HJ, Hebert TL, Cote RH (2000) Mechanism of transducin activation of frog rod photoreceptor phosphodiesterase: allosteric interactions between the inhibitory γ subunit and the noncatalytic cGMP binding sites. J Biol Chem 275:38611–38619. https://doi.org/10.1074/jbc.M004606200

    Article  CAS  PubMed  Google Scholar 

  104. Paglia MJ, Mou H, Cote RH (2002) Regulation of photoreceptor phosphodiesterase (PDE6) by phosphorylation of its inhibitory γ subunit re-evaluated. J Biol Chem 277:5017–5023. https://doi.org/10.1074/jbc.M106328200

    Article  CAS  PubMed  Google Scholar 

  105. Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A 106:18225–18230. https://doi.org/10.1073/pnas.0907635106

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pattis JG, Kamal S, Li B, May ER (2019) Catalytic domains of phosphodiesterase 5, 6, and 5/6 chimera display differential dynamics and ligand dissociation energy barriers. J Phys Chem B 123:825–835. https://doi.org/10.1021/acs.jpcb.8b11370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peinado Allina G, Fortenbach C, Naarendorp F, Gross OP, Pugh EN, Burns ME (2017) Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9. J Gen Physiol 149:443–454. https://doi.org/10.1085/jgp.201611692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pentia DC, Hosier S, Cote RH (2006) The glutamic acid-rich protein-2 (GARP2) is a high affinity rod photoreceptor phosphodiesterase (PDE6)-binding protein that modulates its catalytic properties. J Biol Chem 281:5500–5505. https://doi.org/10.1074/jbc.M507488200

    Article  CAS  PubMed  Google Scholar 

  109. Pittler SJ, Baehr W (1991) Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase β-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 88:8322–8326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ponzoni L, Peñaherrera DA, Oltvai ZN, Bahar I (2020) Rhapsody: predicting the pathogenicity of human missense variants. Bioinformatics 36:3084–3092. https://doi.org/10.1093/bioinformatics/btaa127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Power M, Das S, Schutze K, Marigo V, Ekstrom P, Paquet-Durand F (2020) Cellular mechanisms of hereditary photoreceptor degeneration - focus on cGMP. Prog Retin Eye Res 74:100772. https://doi.org/10.1016/j.preteyeres.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  112. Pugh EN, Lamb TD (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141:111–149. https://doi.org/10.1016/0005-2728(93)90038-h

    Article  CAS  PubMed  Google Scholar 

  113. Qi C, Sorrentino S, Medalia O, Korkhov VM (2019) The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science 364:389–394. https://doi.org/10.1126/science.aav0778

    Article  CAS  PubMed  Google Scholar 

  114. Qureshi BM, Behrmann E, Schoneberg J, Loerke J, Burger J, Mielke T, Giesebrecht J, Noe F, Lamb TD, Hofmann KP, Spahn CMT, Heck M (2018) It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods. Open Biol 8:180075. https://doi.org/10.1098/rsob.180075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Reingruber J, Ingram NT, Griffis KG, Fain GL (2020) A kinetic analysis of mouse rod and cone photoreceptor responses. J Physiol 598:3747–3763. https://doi.org/10.1113/JP279524

    Article  CAS  PubMed  Google Scholar 

  116. Remmer MH, Rastogi N, Ranka MP, Ceisler EJ (2015) Achromatopsia: a review. Curr Opin Ophthalmol 26:333–340. https://doi.org/10.1097/ICU.0000000000000189

    Article  PubMed  Google Scholar 

  117. Rieke F, Baylor DA (1996) Molecular origin of continuous dark noise in rod photoreceptors. Biophys J 71:2553–2572. https://doi.org/10.1016/S0006-3495(96)79448-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rieke F, Baylor DA (2000) Origin and functional impact of dark noise in retinal cones. Neuron 26:181–186. https://doi.org/10.1016/s0896-6273(00)81148-4

    Article  CAS  PubMed  Google Scholar 

  119. Sidman RL, Green MC (1965) Retinal degeneration in the mouse: location of the rd locus in linkage group XVII. J Hered 56:23–29. https://doi.org/10.1093/oxfordjournals.jhered.a107364

    Article  CAS  PubMed  Google Scholar 

  120. Song J, Guo LW, Muradov H, Artemyev NO, Ruoho AE, Markley JL (2008) Intrinsically disordered gamma-subunit of cGMP phosphodiesterase encodes functionally relevant transient secondary and tertiary structure. Proc Natl Acad Sci U S A 105:1505–1510. https://doi.org/10.1073/pnas.0709558105

    Article  PubMed  PubMed Central  Google Scholar 

  121. Strauss RW, Dubis AM, Cooper RF, Ba-Abbad R, Moore AT, Webster AR, Dubra A, Carroll J, Michaelides M (2015) Retinal architecture in RGS9- and R9AP-associated retinal dysfunction (Bradyopsia). Am J Ophthalmol 160:1269-1275.e1261. https://doi.org/10.1016/j.ajo.2015.08.032

    Article  PubMed  PubMed Central  Google Scholar 

  122. Szabo V, Kreienkamp HJ, Rosenberg T, Gal A (2007) p.Gln200Glu, a putative constitutively active mutant of rod α-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Hum Mutat 28:741–742. https://doi.org/10.1002/humu.9499

    Article  PubMed  Google Scholar 

  123. Tate RJ, Arshavsky VY, Pyne NJ (2002) The identification of the inhibitory gamma-subunits of the type 6 retinal cyclic guanosine monophosphate phosphodiesterase in non-retinal tissues: differential processing of mRNA transcripts. Genomics 79:582–586. https://doi.org/10.1006/geno.2002.6740

    Article  CAS  PubMed  Google Scholar 

  124. Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JWB, Besirli CG, Birch DG, Branham KE, Cideciyan AV, Daiger SP, Dalkara D, Duncan JL, Fahim AT, Flannery JG, Gattegna R, Heckenlively JR, Heon E, Jayasundera KT, Khan NW, Klassen H, Leroy BP, Molday RS, Musch DC, Pennesi ME, Petersen-Jones SM, Pierce EA, Rao RC, Reh TA, Sahel JA, Sharon D, Sieving PA, Strettoi E, Yang P, Zacks DN, Monaciano C (2020) Advancing clinical trials for inherited retinal diseases: recommendations from the second Monaciano symposium. Transl Vis Sci Technol 9:2. https://doi.org/10.1167/tvst.9.7.2

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tian M, Zallocchi M, Wang W, Chen CK, Palczewski K, Delimont D, Cosgrove D, Peng YW (2013) Light-induced translocation of RGS9-1 and Gβ5L in mouse rod photoreceptors. PLoS ONE 8:e58832. https://doi.org/10.1371/journal.pone.0058832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tolone A, Belhadj S, Rentsch A, Schwede F, Paquet-Durand F (2019) The cGMP pathway and inherited photoreceptor degeneration: targets, compounds, and biomarkers. Genes (Basel) 10:453. https://doi.org/10.3390/genes10060453

    Article  CAS  PubMed Central  Google Scholar 

  127. Tsang SH, Sharma T (2018) Congenital stationary night blindness. Adv Exp Med Biol 1085:61–64. https://doi.org/10.1007/978-3-319-95046-4_13

    Article  PubMed  Google Scholar 

  128. Tsang SH, Sharma T (2018) Progressive cone dystrophy and cone-rod dystrophy (XL, AD, and AR). Adv Exp Med Biol 1085:53–60. https://doi.org/10.1007/978-3-319-95046-4_12

    Article  PubMed  Google Scholar 

  129. Tsang SH, Woodruff ML, Janisch KM, Cilluffo MC, Farber DB, Fain GL (2007) Removal of phosphorylation sites of γ subunit of phosphodiesterase 6 alters rod light response. J Physiol 579:303–312. https://doi.org/10.1113/jphysiol.2006.121772

    Article  CAS  PubMed  Google Scholar 

  130. Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A (2015) Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 8:109–129. https://doi.org/10.1242/dmm.017913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang H, Robinson H, Ke H (2010) Conformation changes, N-terminal involvement, and cGMP signal relay in the phosphodiesterase-5 GAF domain. J Biol Chem 285:38149–38156. https://doi.org/10.1074/jbc.M110.141614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang T, Tsang SH, Chen J (2017) Two pathways of rod photoreceptor cell death induced by elevated cGMP. Hum Mol Genet 26:2299–2306. https://doi.org/10.1093/hmg/ddx121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang X, Plachetzki DC, Cote RH (2019) The N termini of the inhibitory γ-subunits of phosphodiesterase-6 (PDE6) from rod and cone photoreceptors differentially regulate transducin-mediated PDE6 activation. J Biol Chem 294:8351–8360. https://doi.org/10.1074/jbc.RA119.007520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Webb B, Viswanath S, Bonomi M, Pellarin R, Greenberg CH, Saltzberg D, Sali A (2018) Integrative structure modeling with the Integrative Modeling Platform. Protein Sci 27:245–258. https://doi.org/10.1002/pro.3311

    Article  CAS  PubMed  Google Scholar 

  135. Wen XH, Dizhoor AM, Makino CL (2014) Membrane guanylyl cyclase complexes shape the photoresponses of retinal rods and cones. Front Mol Neurosci 7:45. https://doi.org/10.3389/fnmol.2014.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wensel TG (2008) Signal transducing membrane complexes of photoreceptor outer segments. Vision Res 48:2052–2061. https://doi.org/10.1016/j.visres.2008.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wensel TG, Stryer L (1990) Activation mechanism of retinal rod cyclic GMP phosphodiesterase probed by fluorescein-labeled inhibitory subunit. Biochemistry 29:2155–2161. https://doi.org/10.1021/bi00460a028

    Article  CAS  PubMed  Google Scholar 

  138. Woodruff ML, Janisch KM, Peshenko IV, Dizhoor AM, Tsang SH, Fain GL (2008) Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors. J Neurosci 28:2064–2074. https://doi.org/10.1523/JNEUROSCI.2973-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yadav RP, Artemyev NO (2017) AIPL1: a specialized chaperone for the phototransduction effector. Cell Signal 40:183–189. https://doi.org/10.1016/j.cellsig.2017.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yamazaki A, Bartucci F, Ting A, Bitensky MW (1982) Reciprocal effects of an inhibitory factor on catalytic activity and noncatalytic cGMP binding sites of rod phosphodiesterase. Proc Natl Acad Sci U S A 79:3702–3706. https://doi.org/10.1073/pnas.79.12.3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yamazaki A, Bondarenko VA, Dua S, Yamazaki M, Usukura J, Hayashi F (1996) Possible stimulation of retinal rod recovery to dark state by cGMP release from a cGMP phosphodiesterase noncatalytic site. J Biol Chem 271:32495–32498. https://doi.org/10.1074/jbc.271.51.32495

    Article  CAS  PubMed  Google Scholar 

  142. Yue WWS, Silverman D, Ren X, Frederiksen R, Sakai K, Yamashita T, Shichida Y, Cornwall MC, Chen J, Yau KW (2019) Elementary response triggered by transducin in retinal rods. Proc Natl Acad Sci U S A 116:5144–5153. https://doi.org/10.1073/pnas.1817781116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zeng-Elmore X, Gao XZ, Pellarin R, Schneidman-Duhovny D, Zhang XJ, Kozacka KA, Tang Y, Sali A, Chalkley RJ, Cote RH, Chu F (2014) Molecular architecture of photoreceptor phosphodiesterase elucidated by chemical cross-linking and integrative modeling. J Mol Biol 426:3713–3728. https://doi.org/10.1016/j.jmb.2014.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang XJ, Cahill KB, Elfenbein A, Arshavsky VY, Cote RH (2008) Direct allosteric regulation between the GAF domain and catalytic domain of photoreceptor phosphodiesterase PDE6. J Biol Chem 283:29699–29705. https://doi.org/10.1074/jbc.M803948200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang XJ, Feng Q, Cote RH (2005) Efficacy and selectivity of phosphodiesterase-targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors. Invest Ophthalmol Vis Sci 46:3060–3066. https://doi.org/10.1167/iovs.05-0257

    Article  PubMed  Google Scholar 

  146. Zhang XJ, Gao XZ, Yao W, Cote RH (2012) Functional mapping of interacting regions of the photoreceptor phosphodiesterase (PDE6) γ-subunit with PDE6 catalytic dimer, transducin, and Regulator of G-protein Signaling9-1 (RGS9-1). J Biol Chem 287:26312–26320. https://doi.org/10.1074/jbc.M112.377333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang XJ, Skiba NP, Cote RH (2010) Structural requirements of the photoreceptor phosphodiesterase gamma-subunit for inhibition of rod PDE6 holoenzyme and for its activation by transducin. J Biol Chem 285:4455–4463. https://doi.org/10.1074/jbc.M109.057406

    Article  CAS  PubMed  Google Scholar 

  148. Zhang Z, He F, Constantine R, Baker ML, Baehr W, Schmid MF, Wensel TG, Agosto MA (2015) Domain organization and conformational plasticity of the G protein effector, PDE6. J Biol Chem 290:12833–12843. https://doi.org/10.1074/jbc.A115.647636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zoraghi R, Corbin JD, Francis SH (2004) Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 65:267–278. https://doi.org/10.1124/mol.65.2.267

    Article  CAS  PubMed  Google Scholar 

  150. Zuo H, Faiz A, van den Berge M, Mudiyanselage S, Borghuis T, Timens W, Nikolaev VO, Burgess JK, Schmidt M (2020) Cigarette smoke exposure alters phosphodiesterases in human structural lung cells. Am J Physiol Lung Cell Mol Physiol 318:L59–L64. https://doi.org/10.1152/ajplung.00319.2019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is most grateful for the scientific contributions of past and present members of his laboratory, as well as collaborating investigators.

Funding

The research in the author’s laboratory was supported by the National Eye Institute (NIH) grant R01 EY05798, and the National Institute of General Medical Sciences (NIH) grant P20 GM113131.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, literature review, writing, reviewing, and editing of the manuscript: Rick H. Cote.

Corresponding author

Correspondence to Rick H. Cote.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Note applicable.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is published as part of the Special Issue on Function and Dysfunction in Vertebrate Photoreceptor Cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cote, R.H. Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch - Eur J Physiol 473, 1377–1391 (2021). https://doi.org/10.1007/s00424-021-02562-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02562-x

Keywords

Navigation