Skip to main content

Advertisement

Log in

Light responses of mammalian cones

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cone photoreceptors provide the foundation of most of human visual experience, but because they are smaller and less numerous than rods in most mammalian retinas, much less is known about their physiology. We describe new techniques and approaches which are helping to provide a better understanding of cone function. We focus on several outstanding issues, including the identification of the features of the phototransduction cascade that are responsible for the more rapid kinetics and decreased sensitivity of the cone response, the roles of inner-segment voltage-gated and Ca2+-activated channels, the means by which cones remain responsive even in the brightest illumination, mechanisms of cone visual pigment regeneration in constant light, and energy consumption of cones in comparison to that of rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ait-Ali N, Fridlich R, Millet-Puel G, Clerin E, Delalande F, Jaillard C, Blond F, Perrocheau L, Reichman S, Byrne LC, Olivier-Bandini A, Bellalou J, Moyse E, Bouillaud F, Nicol X, Dalkara D, van Dorsselaer A, Sahel JA, Leveillard T (2015) Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 161:817–832. https://doi.org/10.1016/j.cell.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  2. Alpern M, Maaseidvaag F, Ohba N (1971) The kinetics of cone visual pigments in man. Vision Res 11:539–549. https://doi.org/10.1016/0042-6989(71)90075-7

    Article  CAS  PubMed  Google Scholar 

  3. Angueyra JM, Rieke F (2013) Origin and effect of phototransduction noise in primate cone photoreceptors. Nat Neurosci 16:1692–1700. https://doi.org/10.1038/nn.3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asteriti S, Gargini C, Cangiano L (2017) Connexin 36 expression is required for electrical coupling between mouse rods and cones. Vis Neurosci 34:e006. https://doi.org/10.1017/S0952523817000037

    Article  PubMed  Google Scholar 

  5. Asteriti S, Grillner S, Cangiano L (2015) A Cambrian origin for vertebrate rods. eLife 4. https://doi.org/10.7554/eLife.07166

  6. Attwell D (1986) The Sharpey-Schafer lecture. Ion channels and signal processing in the outer retina. Q J Exp Physiol 71:497–536

    Article  CAS  Google Scholar 

  7. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metabol 21.https://doi.org/10.1097/00004647-200110000-00001

  8. Azevedo AW, Rieke F (2011) Experimental protocols alter phototransduction: the implications for retinal processing at visual threshold. J Neurosci 31:3670–3682. https://doi.org/10.1523/JNEUROSCI.4750-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bader CR, Bertrand D, Schwartz EA (1982) Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol 331:253–284. https://doi.org/10.1113/jphysiol.1982.sp014372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barnes S, Hille B (1989) Ionic channels of the inner segment of tiger salamander cone photoreceptors. J Gen Physiol 94:719–743. https://doi.org/10.1085/jgp.94.4.719

    Article  CAS  PubMed  Google Scholar 

  11. Barone I, Novelli E, Strettoi E (2014) Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment. Mol Vis 20:1545–1556

  12. Barrow AJ, Wu SM (2009) Low-conductance HCN1 ion channels augment the frequency response of rod and cone photoreceptors. J Neurosci 29:5841–5853. https://doi.org/10.1523/JNEUROSCI.5746-08.2009

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baudin J, Angueyra JM, Sinha R, Rieke F (2019) S-cone photoreceptors in the primate retina are functionally distinct from L and M cones. eLife 8. https://doi.org/10.7554/eLife.39166

  14. Baylor DA, Fuortes MG (1970) Electrical responses of single cones in the retina of the turtle. J Physiol (Lond) 207:77–92. https://doi.org/10.1113/jphysiol.1970.sp009049

    Article  CAS  Google Scholar 

  15. Beech DJ, Barnes S (1989) Characterization of a voltage-gated K+ channel that accelerates the rod response to dim light. Neuron 3:573–581. https://doi.org/10.1016/0896-6273(89)90267-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burkhardt DA (1994) Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle. J Neurosci 14:1091–1105. https://doi.org/10.1523/JNEUROSCI.14-03-01091.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burns ME, Mendez A, Chen J, Baylor DA (2002) Dynamics of cyclic GMP synthesis in retinal rods. Neuron 36:81–91. https://doi.org/10.1016/s0896-6273(02)00911-x

    Article  CAS  PubMed  Google Scholar 

  18. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417. https://doi.org/10.1126/science.1190897

    Article  CAS  PubMed  Google Scholar 

  19. Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicolo M, Kosaras B, Wong G, Gannon KS, Margolskee RF, Sidman RL, Pugh EN Jr, Makino CL, Lem J (2000) Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proc Natl Acad Sci U S A 97:13913–13918. https://doi.org/10.1073/pnas.250478897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao LH, Luo DG, Yau KW (2014) Light responses of primate and other mammalian cones. Proc Natl Acad Sci U S A 111:2752–2757. https://doi.org/10.1073/pnas.1400268111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol 188:245–262. https://doi.org/10.1002/cne.901880204

    Article  CAS  PubMed  Google Scholar 

  22. Cervetto L, Lagnado L, Perry RJ, Robinson DW, McNaughton PA (1989) Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature 337:740–743. https://doi.org/10.1038/337740a0

    Article  CAS  PubMed  Google Scholar 

  23. Chen CK, Woodruff ML, Chen FS, Chen D, Fain GL (2010) Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci 30:1213–1220. https://doi.org/10.1523/JNEUROSCI.4353-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen CK, Woodruff ML, Chen FS, Shim H, Cilluffo MC, Fain G (2010) Replacing the rod with the cone transducin alpha subunit decreases sensitivity and accelerates response decay. J Physiol 588:3231–3241. https://doi.org/10.1113/jphysiol.2010.191221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen CK, Woodruff ML, Fain GL (2015) Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation. J Gen Physiol 145:213–224. https://doi.org/10.1085/jgp.201411273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen J, Woodruff ML, Wang T, Concepcion F, Tranchina D, Fain GL (2010) Channel modulation and the mechanism of light adaptation in mouse rods. J Neurosci 30:16232–16240. https://doi.org/10.1523/JNEUROSCI.2868-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng SY, Cipi J, Ma S, Hafler BP, Kanadia RN, Brush RS, Agbaga MP, Punzo C (2020) Altered photoreceptor metabolism in mouse causes late stage age-related macular degeneration-like pathologies. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2000339117

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chun MH, Grunert U, Martin PR, Wassle H (1996) The synaptic complex of cones in the fovea and in the periphery of the macaque monkey retina. Vision Res 36:3383–3395. https://doi.org/10.1016/0042-6989(95)00334-7

    Article  CAS  PubMed  Google Scholar 

  29. Cia D, Bordais A, Varela C, Forster V, JSahel JA, Rendon A, Picaud S, (2005) Voltage-gated channels and calcium homeostasis in mammalian rod photoreceptors. J Neurophysiol 93:1468–1475. https://doi.org/10.1152/jn.00874.2004

    Article  CAS  PubMed  Google Scholar 

  30. Della Santina L, Piano I, Cangiano L, Caputo A, Ludwig A, Cervetto L, Gargini C (2012) Processing of retinal signals in normal and HCN deficient mice. PLoS ONE 7:e29812. https://doi.org/10.1371/journal.pone.0029812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Demontis GC, Longoni B, Barcaro U, Cervetto L (1999) Properties and functional roles of hyperpolarization-gated currents in guinea-pig retinal rods. J Physiol 515:813–828. https://doi.org/10.1111/j.1469-7793.1999.813ab.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Demontis GC, Moroni A, Gravante B, Altomare C, Longoni B, Cervetto L, DiFrancesco D (2002) Functional characterisation and subcellular localisation of HCN1 channels in rabbit retinal rod photoreceptors. J Physiol 542:89–97. https://doi.org/10.1113/jphysiol.2002.017640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dickson DH, Graves DA (1979) Fine structure of the lamprey photoreceptors and retinal pigment epithelium (Petromyzon marinus L.). Exp Eye Res 29:45–60. https://doi.org/10.1016/0014-4835(79)90165-9

    Article  CAS  PubMed  Google Scholar 

  34. Dowling JE (1965) Foveal receptors of the monkey retina: fine structure. Science 147:57–59. https://doi.org/10.1126/science.147.3653.57

    Article  CAS  PubMed  Google Scholar 

  35. Fain GL (2019) Lamprey vision: photoreceptors and organization of the retina. Semin Cell Dev Biol:2019 Nov 2019. pii: S1084–9521(2019)30258–30257. doi: 30210.31016/j.semcdb.32019.30210.30008.

  36. Fain GL, Gerschenfeld HM, Quandt FN (1980) Calcium spikes in toad rods. J Physiol (Lond) 303:495–513. https://doi.org/10.1113/jphysiol.1980.sp013300

    Article  CAS  Google Scholar 

  37. Fain GL, Matthews HR, Cornwall MC, Koutalos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151. https://doi.org/10.1152/physrev.2001.81.1.117

    Article  CAS  PubMed  Google Scholar 

  38. Fain GL, Quandt FN (1980) The effects of tetraethylammonium and cobalt ions on responses to extrinsic current in toad rods. J Physiol (Lond) 303:515–533. https://doi.org/10.1113/jphysiol.1980.sp013301

    Article  CAS  Google Scholar 

  39. Fain GL, Quandt FN, Bastian BL, Gerschenfeld HM (1978) Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature 272:466–469. https://doi.org/10.1038/272467a0

    Article  CAS  PubMed  Google Scholar 

  40. Fain GL, Quandt FN, Gerschenfeld HM (1977) Calcium-dependent regenerative responses in rods. Nature 269:707–710. https://doi.org/10.1038/269707a0

    Article  CAS  PubMed  Google Scholar 

  41. Fain GL, Sampath AP (2018) Rod and cone interactions in the retina. F1000Research 7(F1000 Faculty Rev):657. https://doi.org/10.12688/f1000research.14412.1

  42. Goldstein EB (1970) Cone pigment regeneration in the isolated frog retina. Vision Res 10:1065–1068. https://doi.org/10.1016/0042-6989(70)90082-9

    Article  CAS  PubMed  Google Scholar 

  43. Govardovskii VI, Lychakov DV (1984) Visual cells and visual pigments of the lamprey, Lampetra fluviatilis. J Comp Physiology A 154:279–286. https://doi.org/10.1007/BF00604994

    Article  Google Scholar 

  44. Granda AM, Maxwell JH, Zwick H (1972) The temporal course of dark adaptation in the turtle, Pseudemys, using a behavioral avoidance paradigm. Vision Res 12:653–672. https://doi.org/10.1016/0042-6989(72)90160-5

    Article  CAS  PubMed  Google Scholar 

  45. Gross OP, Pugh EN Jr, Burns ME (2012) Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 76:370–382. https://doi.org/10.1016/j.neuron.2012.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JL (2005) Toward a unified model of vertebrate rod phototransduction. Vis Neurosci 22:417–436. https://doi.org/10.1017/S0952523805224045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hao W, Fong HK (1999) The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J Biol Chem 274:6085–6090. https://doi.org/10.1074/jbc.274.10.6085

    Article  CAS  PubMed  Google Scholar 

  48. Haynes LW, Kay AR, Yau KW (1986) Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 321:66–70. https://doi.org/10.1038/321066a0

    Article  CAS  PubMed  Google Scholar 

  49. Hestrin S (1987) The properties and function of inward rectification in rod photoreceptors of the tiger salamander. J Physiol 390:319–333. https://doi.org/10.1113/jphysiol.1987.sp016703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hood DC, Hock PA (1973) Recovery of cone receptor activity in the frog’s isolated retina. Vision Res 13:1943–1951. https://doi.org/10.1016/0042-6989(73)90065-5

    Article  CAS  PubMed  Google Scholar 

  51. Ingram NT, Sampath AP, Fain GL (2016) Why are rods more sensitive than cones? J Physiol 594:5415–5426. https://doi.org/10.1113/JP272556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ingram NT, Sampath AP, Fain GL (2019) Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors. J Gen Physiol 151:1287–1299. https://doi.org/10.1085/jgp.201912419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ingram NT, Sampath AP, Fain GL (2020) Membrane conductances of mouse cone photoreceptors. J Gen Physiol 152(3):e201912520. https://doi.org/10.1085/jgp.201912520.

  54. Ishikawa M, Takao M, Washioka H, Tokunaga F, Watanabe H, Tonosaki A (1987) Demonstration of rod and cone photoreceptors in the lamprey retina by freeze-replication and immunofluorescence. Cell Tissue Res 249:241–246. https://doi.org/10.1007/BF00215506

    Article  CAS  PubMed  Google Scholar 

  55. Jin N, Zhang Z, Keung J, Youn SB, Ishibashi M, Tian L-M, Marshak DW, Solessio E, Umino Y, Fahrenfort I, Kiyama T, Mao E-A, You Y, Wei H, Wu J, Postma F, Paul DL, Massey SC, Ribelayga CP (2020) Molecular and functional architecture of the mouse photoreceptor network. Sci Adv 6:eaba7232. https://doi.org/10.1126/sciadv.aba7232

  56. Jones GJ, Crouch RK, Wiggert B, Cornwall MC, Chader GJ (1989) Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A 86:9606–9610. https://doi.org/10.1073/pnas.86.23.9606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaylor JJ, Xu T, Ingram NT, Tsan A, Hakobyan H, Fain GL, Travis GH (2017) Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate. Nat Commun 8:16. https://doi.org/10.1038/s41467-017-00018-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Korenbrot JI, Mehta M, Tserentsoodol N, Postlethwait JH, Rebrik TI (2013) EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. J Neurosci 33:17763–17776. https://doi.org/10.1523/JNEUROSCI.2659-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krispel CM, Chen D, Melling N, Chen YJ, Martemyanov KA, Quillinan N, Arshavsky VY, Wensel TG, Chen CK, Burns ME (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51:409–416. https://doi.org/10.1016/j.neuron.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  60. Kuraku S, Kuratani S (2006) Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zoolog Sci 23:1053–1064. https://doi.org/10.2108/zsj.23.1053

    Article  CAS  PubMed  Google Scholar 

  61. Lamb TD (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 36:52–119. https://doi.org/10.1016/j.preteyeres.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  62. Léveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz AC, Clerin E, Simonutti M, Forster V, Cavusoglu N, Chalmel F, Dolle P, Poch O, Lambrou G, Sahel JA (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36:755–759. https://doi.org/10.1038/ng1386

    Article  CAS  PubMed  Google Scholar 

  63. Lin B, Masland RH, Strettoi E (2009) Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 88:589–599. https://doi.org/10.1016/j.exer.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  64. Lobanova ES, Herrmann R, Finkelstein S, Reidel B, Skiba NP, Deng WT, Jo R, Weiss ER, Hauswirth WW, Arshavsky VY (2010) Mechanistic basis for the failure of cone transducin to translocate: why cones are never blinded by light. J Neurosci 30:6815–6824. https://doi.org/10.1523/JNEUROSCI.0613-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. MacLeish PR, Nurse CA (2007) Ion channel compartments in photoreceptors: evidence from salamander rods with intact and ablated terminals. J Neurophysiol 98:86–95. https://doi.org/10.1152/jn.00775.2006

    Article  CAS  PubMed  Google Scholar 

  66. Majumder A, Pahlberg J, Boyd KK, Kerov V, Kolandaivelu S, Ramamurthy V, Sampath AP, Artemyev NO (2013) Transducin translocation contributes to rod survival and enhances synaptic transmission from rods to rod bipolar cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1222666110

    Article  PubMed  PubMed Central  Google Scholar 

  67. Majumder A, Pahlberg J, Muradov H, Boyd KK, Sampath AP, Artemyev NO (2015) Exchange of cone for rod phosphodiesterase 6 catalytic subunits in rod photoreceptors mimics in part features of light adaptation. J Neurosci 35:9225–9235. https://doi.org/10.1523/JNEUROSCI.3563-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mao BQ, MacLeish PR, Victor JD (2003) Role of hyperpolarization-activated currents for the intrinsic dynamics of isolated retinal neurons. Biophys J 84:2756–2767. https://doi.org/10.1016/S0006-3495(03)75080-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mata NL, Radu RA, Clemmons RC, Travis GH (2002) Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 36:69–80. https://doi.org/10.1016/s0896-6273(02)00912-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matthews HR, Fain GL, Murphy RL, Lamb TD (1990) Light adaptation in cone photoreceptors of the salamander: a role for cytoplasmic calcium. J Physiol (Lond) 420:447–469. https://doi.org/10.1113/jphysiol.1990.sp017922

    Article  CAS  Google Scholar 

  71. Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, Baylor DA, Chen J (2001) Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Sci U S A 98:9948–9953. https://doi.org/10.1073/pnas.171308998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646–1652. https://doi.org/10.1046/j.1432-1327.2001.02036.x

    Article  CAS  PubMed  Google Scholar 

  73. Morshedian A, Fain GL (2015) Single-photon sensitivity of lamprey rods with cone-like outer segments. Curr Biol 25:484–487. https://doi.org/10.1016/j.cub.2014.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morshedian A, Fain GL (2017) Light adaptation and the evolution of vertebrate photoreceptors. J Physiol 595:4947–4960. https://doi.org/10.1113/JP274211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morshedian A, Kaylor JJ, Ng SY, Tsan A, Frederiksen R, Xu T, Yuan L, Sampath AP, Radu RA, Fain GL, Travis GH (2019) Light-driven regeneration of cone visual pigments through a mechanism involving RGR opsin in Muller glial cells. Neuron 102(1172–1183):e1175. https://doi.org/10.1016/j.neuron.2019.04.004

    Article  CAS  Google Scholar 

  76. Morshedian A, Woodruff ML, Fain GL (2018) Role of recoverin in rod photoreceptor light adaptation. J Physiol 596:1513–1526. https://doi.org/10.1113/JP275779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Müller F, Scholten A, Ivanova E, Haverkamp S, Kremmer E, Kaupp UB (2003) HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals. Eur J Neurosci 17:2084–2096. https://doi.org/10.1046/j.1460-9568.2003.02634.x

    Article  PubMed  Google Scholar 

  78. Narayan DS, Wood JP, Chidlow G, Casson RJ (2016) A review of the mechanisms of cone degeneration in retinitis pigmentosa. Acta Ophthalmol 94:748–754. https://doi.org/10.1111/aos.13141

    Article  PubMed  Google Scholar 

  79. Nikonov SS, Daniele LL, Zhu X, Craft CM, Swaroop A, Pugh EN Jr (2005) Photoreceptors of Nrl -/- mice coexpress functional S- and M-cone opsins having distinct inactivation mechanisms. J Gen Physiol 125:287–304. https://doi.org/10.1085/jgp.200409208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nikonov SS, Kholodenko R, Lem J, Pugh EN Jr (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J Gen Physiol 127:359–374. https://doi.org/10.1085/jgp.200609490

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nunn BJ, Schnapf JL, Baylor DA (1984) Spectral sensitivity of single cones in the retina of Macaca fascicularis. Nature 309:264–266. https://doi.org/10.1038/309264a0

    Article  CAS  PubMed  Google Scholar 

  82. Nymark S, Frederiksen R, Woodruff ML, Cornwall MC, Fain GL (2012) Bleaching of mouse rods: microspectrophotometry and suction-electrode recording. J Physiol 590:2353–2364. https://doi.org/10.1113/jphysiol.2012.228627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Öhman P (1971) The photoreceptor outer segments of the river lamprey (Lampreta fluviatilis). An electron- fluorescence- and light microscopic study. Acta Zoologica 52:287–297. No doi.

  84. Öhman P (1976) Fine structure of photoreceptors and associated neurons in the retina of Lampetra fluviatilis (Cyclostomi). Vision Res 16:659–662. https://doi.org/10.1016/0042-6989(76)90014-6

    Article  PubMed  Google Scholar 

  85. Okawa H, Sampath AP, Laughlin SB, Fain GL (2008) ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol 18:1917–1921. https://doi.org/10.1016/j.cub.2008.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ortin-Martinez A, Nadal-Nicolas FM, Jimenez-Lopez M, Alburquerque-Bejar JJ, Nieto-Lopez L, Garcia-Ayuso D, Villegas-Perez MP, Vidal-Sanz M, Agudo-Barriuso M (2014) Number and distribution of mouse retinal cone photoreceptors: differences between an albino (Swiss) and a pigmented (C57/BL6) strain. PLoS ONE 9:e102392. https://doi.org/10.1371/journal.pone.0102392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Østerberg G (1935) Topography of the layer of rods and cones in the human retina. Acta Opthalmologica (Copenhagen) Supplement 6:1–103

  88. Pahlberg J, Frederiksen R, Pollock GE, Miyagishima KJ, Sampath AP, Cornwall MC (2017) Voltage-sensitive conductances increase the sensitivity of rod photoresponses following pigment bleaching. J Physiol 595:3459–3469. https://doi.org/10.1113/JP273398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pandey S, Blanks JC, Spee C, Jiang M, Fong HK (1994) Cytoplasmic retinal localization of an evolutionary homolog of the visual pigments. Exp Eye Res 58:605–613. https://doi.org/10.1006/exer.1994.1055

    Article  CAS  PubMed  Google Scholar 

  90. Perry RJ, McNaughton PA (1991) Response properties of cones from the retina of the tiger salamander. J Physiol (Lond) 433:561–587. https://doi.org/10.1113/jphysiol.1991.sp018444

    Article  CAS  Google Scholar 

  91. Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR (2012) Shedding new light on opsin evolution. Proc Biol Sci 279:3–14. https://doi.org/10.1098/rspb.2011.1819

    Article  PubMed  Google Scholar 

  92. Power M, Das S, Schütze K, Marigo V, Ekström P, Paquet-Durand F (2020) Cellular mechanisms of hereditary photoreceptor degeneration – focus on cGMP. Prog Retin Eye Res 74:100772. https://doi.org/10.1016/j.preteyeres.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  93. Pugh EN Jr, Lamb TD (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141:111–149. https://doi.org/10.1016/0005-2728(93)90038-h

    Article  CAS  PubMed  Google Scholar 

  94. Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52. https://doi.org/10.1038/nn.2234

    Article  CAS  PubMed  Google Scholar 

  95. Rebrik TI, Botchkina I, Arshavsky VY, Craft CM, Korenbrot JI (2012) CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels. J Neurosci 32:3142–3153. https://doi.org/10.1523/JNEUROSCI.5518-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reingruber J, Holcman D (2008) The dynamics of phosphodiesterase activation in rods and cones. Biophys J 94:1954–1970. https://doi.org/10.1529/biophysj.107.116202

    Article  CAS  PubMed  Google Scholar 

  97. Reingruber J, Ingram NT, Griffis C, Fain GL (2020) A kinetic analysis of mouse rod and cone photoreceptor responses. J Physiol. https://doi.org/10.1113/JP279524

  98. Reingruber J, Pahlberg J, Woodruff ML, Sampath AP, Fain GL, Holcman D (2013) Detection of single photons by toad and mouse rods. Proc Natl Acad Sci U S A 110:19378–19383. https://doi.org/10.1073/pnas.1314030110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rieke F, Baylor D (1996) Molecular origin of continuous dark noise in rod photoreceptors. Biophys J 71:2553–2572. https://doi.org/10.1016/S0006-3495(96)79448-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sahel JA, Leveillard T, Picaud S, Dalkara D, Marazova K, Safran A, Paques M, Duebel J, Roska B, Mohand-Said S (2013) Functional rescue of cone photoreceptors in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 251:1669–1677. https://doi.org/10.1007/s00417-013-2314-7

    Article  PubMed  Google Scholar 

  101. Sakurai K, Chen J, Kefalov VJ (2011) Role of guanylyl cyclase modulation in mouse cone phototransduction. J Neurosci 31:7991–8000. https://doi.org/10.1523/JNEUROSCI.6650-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sakurai K, Chen J, Khani SC, Kefalov VJ (2015) Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase. J Biol Chem 290:9239–9250. https://doi.org/10.1074/jbc.M115.639591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sakurai K, Young JE, Kefalov VJ, Khani SC (2011) Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors. Invest Ophthalmol Vis Sci 52:6793–6800. https://doi.org/10.1167/iovs.11-7158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sampath AP, Strissel KJ, Elias R, Arshavsky VY, McGinnis JF, Chen J, Kawamura S, Rieke F, Hurley JB (2005) Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina. Neuron 46:413–420. https://doi.org/10.1016/j.neuron.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  105. Schneeweis DM, Schnapf JL (1999) The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci 19:1203–1216. https://doi.org/10.1523/JNEUROSCI.19-04-01203.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schön C, Asteriti S, Koch S, Sothilingam V, Garcia Garrido M, Tanimoto N, Herms J, Seeliger MW, Cangiano L, Biel M, Michalakis S (2016) Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia. Hum Mol Genet 25:1165–1175. https://doi.org/10.1093/hmg/ddv639

    Article  CAS  PubMed  Google Scholar 

  107. Seeliger MW, Brombas A, Weiler R, Humphries P, Knop G, Tanimoto N, Muller F (2011) Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision. Nat Commun 2:532. https://doi.org/10.1038/ncomms1540

    Article  CAS  PubMed  Google Scholar 

  108. Sterling P, Laughlin S (2015) Principles of neural design. MIT Press, Cambridge

    Google Scholar 

  109. Taylor WR, Morgans C (1998) Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis Neurosci 15:541–552. https://doi.org/10.1017/s0952523898153142

    Article  CAS  PubMed  Google Scholar 

  110. Van Hook MJ, Nawy S, Thoreson WB (2019) Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2019.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  111. Venkatesh A, Ma S, Le YZ, Hall MN, Ruegg MA, Punzo C (2015) Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Invest 125:1446–1458. https://doi.org/10.1172/JCI79766

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wang JS, Kefalov VJ (2009) An alternative pathway mediates the mouse and human cone visual cycle. Curr Biol 19:1665–1669. https://doi.org/10.1016/j.cub.2009.07.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang JS, Kefalov VJ (2011) The cone-specific visual cycle. Prog Retin Eye Res 30:115–128. https://doi.org/10.1016/j.preteyeres.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  114. Wang W, Lee SJ, Scott PA, Lu X, Emery D, Liu Y, Ezashi T, Roberts MR, Ross JW, Kaplan HJ, Dean DC (2016) Two-step reactivation of dormant cones in retinitis pigmentosa. Cell Rep 15:372–385. https://doi.org/10.1016/j.celrep.2016.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wong F, Kwok SY (2016) The survival of cone photoreceptors in retinitis pigmentosa. JAMA Ophthalmol 134:249–250. https://doi.org/10.1001/jamaophthalmol.2015.5490

    Article  PubMed  Google Scholar 

  116. Woodruff ML, Lem J, Fain GL (2004) Early receptor current of wild-type and transducin knockout mice: photosensitivity and light-induced Ca2+ release. J Physiol 557:821–828. https://doi.org/10.1113/jphysiol.2004.064014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu JW, Slaughter MM (2005) Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse. J Neurosci 25:7660–7668. https://doi.org/10.1523/JNEUROSCI.1572-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yagi T, MacLeish PR (1994) Ionic conductances of monkey solitary cone inner segments. J Neurophysiol 71:656–665. https://doi.org/10.1152/jn.1994.71.2.656

    Article  CAS  PubMed  Google Scholar 

  119. Zhang J, Choi EH, Tworak A, Salom D, Leinonen H, Sander CL, Hoang TV, Handa JT, Blackshaw S, Palczewska G, Kiser PD, Palczewski K (2019) Photic generation of 11-cis-retinal in bovine retinal pigment epithelium. J Biol Chem 294:19137–19154. https://doi.org/10.1074/jbc.RA119.011169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang X, Wensel TG, Kraft TW (2003) GTPase regulators and photoresponses in cones of the eastern chipmunk. J Neurosci 23:1287–1297. https://doi.org/10.1523/JNEUROSCI.23-04-01287.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Margery J. Fain for drawing Figure 3 and for changing fonts in some of the figures from uppercase to lowercase to meet the requirements of the journal, and to Simon Laughlin for his thorough and helpful reading of an earlier draft of the manuscript.

Funding

This work was supported by NEI R01 EY01844 to G.L.F., and NEI R01 EY29817 to A.P.S., an unrestricted grant from Research to Prevent Blindness USA to the UCLA Department of Ophthalmology, and NEI Core Grant EY00311 to the Stein Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gordon L. Fain or Alapakkam P. Sampath.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is published as part of the Special Issue on Function and Dysfunction in Vertebrate Photoreceptor Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fain, G.L., Sampath, A.P. Light responses of mammalian cones. Pflugers Arch - Eur J Physiol 473, 1555–1568 (2021). https://doi.org/10.1007/s00424-021-02551-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02551-0

Keywords

Navigation