Skip to main content

Advertisement

Log in

Structural aspects of rod opsin and their implication in genetic diseases

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aguila M, Bevilacqua D, McCulley C, Schwarz N, Athanasiou D, Kanuga N, Novoselov SS, Lange CA, Ali RR, Bainbridge JW, Gias C, Coffey PJ, Garriga P, Cheetham ME (2014) Hsp90 inhibition protects against inherited retinal degeneration. Hum Mol Genet 23:2164–2175. https://doi.org/10.1093/hmg/ddt613

    Article  CAS  PubMed  Google Scholar 

  2. Andres A, Garriga P, Manyosa J (2003) Altered functionality in rhodopsin point mutants associated with retinitis pigmentosa. Biochem Biophys Res Commun 303:294–301

    Article  CAS  PubMed  Google Scholar 

  3. Arnis S, Hofmann KP (1993) Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. Proc Natl Acad Sci U S A 90:7849–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arvanitakis L, Geras-Raaka E, Gershengorn MC (1998) Constitutively signaling G-protein coupled receptor and human disease. Trends Endocrinol Metab 9:27–31

    Article  CAS  PubMed  Google Scholar 

  5. Athanasiou D, Aguila M, Bellingham J, Li WW, McCulley C, Reeves PJ, Cheetham ME (2018) The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 62:1–23. https://doi.org/10.1016/j.preteyeres.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  6. Baldwin JM (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12:1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baldwin JM, Schertler GF, Unger VM (1997) An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol 272:144–164

    Article  CAS  PubMed  Google Scholar 

  8. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  9. Bartl FJ, Ritter E, Hofmann KP (2001) Signaling states of rhodopsin: absorption of light in active metarhodopsin II generates an all-trans-retinal bound inactive state. J Biol Chem 276:30161–30166

    Article  CAS  PubMed  Google Scholar 

  10. Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881. https://doi.org/10.1074/jbc.M701433200

    Article  CAS  PubMed  Google Scholar 

  11. Baylor D (1996) How photons start vision. Proc Natl Acad Sci U S A 93:560–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Behnen P, Felline A, Comitato A, Di Salvo MT, Raimondi F, Gulati S, Kahremany S, Palczewski K, Marigo V, Fanelli F (2018) A small chaperone improves folding and routing of rhodopsin mutants linked to inherited blindness. iScience 4:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blankenship E, Vahedi-Faridi A, Lodowski DT (2015) The high-resolution structure of activated opsin reveals a conserved solvent network in the transmembrane region essential for activation. Structure 23:2358–2364. https://doi.org/10.1016/j.str.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2:274–286

    Article  CAS  PubMed  Google Scholar 

  16. Brady AE, Limbird LE (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14:297–309

    Article  CAS  PubMed  Google Scholar 

  17. Breikers G, Portier-VandeLuytgaarden MJ, Bovee-Geurts PH, DeGrip WJ (2002) Retinitis pigmentosa-associated rhodopsin mutations in three membrane-located cysteine residues present three different biochemical phenotypes. Biochem Biophys Res Commun 297:847–853

    Article  CAS  PubMed  Google Scholar 

  18. Briscoe AD, Gaur C, Kumar S (2004) The spectrum of human rhodopsin disease mutations through the lens of interspecific variation. Gene 332:107–118. https://doi.org/10.1016/j.gene.2004.02.037

    Article  CAS  PubMed  Google Scholar 

  19. Chabre M, Cone R, Saibil H (2003) Biophysics: is rhodopsin dimeric in native retinal rods? Nature 426:30–31 discussion 31

    Article  CAS  PubMed  Google Scholar 

  20. Chabre M, Deterre P, Antonny B (2009) The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends Pharmacol Sci 30:182–187. https://doi.org/10.1016/j.tips.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  21. Chabre M, le Maire M (2005) Monomeric G-protein-coupled receptor as a functional unit. Biochemistry 44:9395–9403

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Jastrzebska B, Cao P, Zhang J, Wang B, Sun W, Yuan Y, Feng Z, Palczewski K (2014) Inherent instability of the retinitis pigmentosa P23H mutant opsin. J Biol Chem 289:9288–9303. https://doi.org/10.1074/jbc.M114.551713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen YY, Chen Y, Jastrzebska B, Golczak M, Gulati S, Tang H, Seibel W, Li XYY, Jin H, Han Y, Gao SQ, Zhang JY, Liu XJ, Heidari-Torkabadi H, Stewart PL, Harte WE, Tochtrop GP, Palczewski K (2018) A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nat Commun 9. 1976 https://doi.org/10.1038/S41467-018-04261-1

  24. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655. https://doi.org/10.1038/nature09789

    Article  CAS  PubMed  Google Scholar 

  25. Chuang JZ, Vega C, Jun W, Sung CH (2004) Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes. J Clin Invest 114:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen GB, Yang T, Robinson PR, Oprian DD (1993) Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 32:6111–6115

    Article  CAS  PubMed  Google Scholar 

  27. Conn PM, Ulloa-Aguirre A (2010) Trafficking of G-protein-coupled receptors to the plasma membrane: insights for pharmacoperone drugs. Trends Endocrinol Metab 21:190–197. https://doi.org/10.1016/j.tem.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  28. Costa T, Cotecchia S (2005) Historical review: negative efficacy and the constitutive activity of G-protein-coupled receptors. Trends Pharmacol Sci 26:618–624. https://doi.org/10.1016/j.tips.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  29. Dell'Orco D, Koch KW (2015) Transient complexes between dark rhodopsin and transducin: circumstantial evidence or physiological necessity? Biophys J 108:775–777. https://doi.org/10.1016/j.bpj.2014.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dell'Orco D, Schmidt H, Mariani S, Fanelli F (2009) Network-level analysis of light adaptation in rod cells under normal and altered conditions. Mol BioSyst 5:1232–1246. https://doi.org/10.1039/b908123b

    Article  CAS  PubMed  Google Scholar 

  31. Deupi X, Edwards P, Singhal A, Nickle B, Oprian D, Schertler G, Standfuss J (2012) Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc Natl Acad Sci U S A 109:119–124. https://doi.org/10.1073/pnas.1114089108

    Article  PubMed  Google Scholar 

  32. Dizhoor AM, Woodruff ML, Olshevskaya EV, Cilluffo MC, Cornwall MC, Sieving PA, Fain GL (2008) Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin. J Neurosci 28:11662–11672. https://doi.org/10.1523/JNEUROSCI.4006-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ernst OP, Gramse V, Kolbe M, Hofmann KP, Heck M (2007) Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci U S A 104:10859–10864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fahmy K, Sakmar TP, Siebert F (2000) Transducin-dependent protonation of glutamic acid 134 in rhodopsin. Biochemistry 39:10607–10612

    Article  CAS  PubMed  Google Scholar 

  35. Fanelli F, De Benedetti PG (2011) Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 111:PR438–PR535. https://doi.org/10.1021/cr100437t

    Article  CAS  PubMed  Google Scholar 

  36. Fanelli F, Felline A, Raimondi F (2013) Network analysis to uncover the structural communication in GPCRs. Methods Cell Biol 117:43–61. https://doi.org/10.1016/B978-0-12-408143-7.00003-7

    Article  CAS  PubMed  Google Scholar 

  37. Fanelli F, Seeber M (2010) Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants. FASEB J 24:3196–3209. https://doi.org/10.1096/fj.09-151084

    Article  CAS  PubMed  Google Scholar 

  38. Farrens DL, Khorana HG (1995) Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy. J Biol Chem 270:5073–5076

    Article  CAS  PubMed  Google Scholar 

  39. Felline A, Seeber M, Rao F, Fanelli F (2009) Computational screening of rhodopsin mutations associated with retinitis pigmentosa. J Chem Theory Comput 5:2472–2485. https://doi.org/10.1021/Ct900145u

    Article  CAS  PubMed  Google Scholar 

  40. Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F (2011) Retinitis pigmentosa: genes and disease mechanisms. Curr Genom 12:238–249

    Article  CAS  Google Scholar 

  41. Flock T, Ravarani CN, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM (2015) Universal allosteric mechanism for Galpha activation by GPCRs. Nature 524:173–179. https://doi.org/10.1038/nature14663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fotiadis D, Jastrzebska B, Philippsen A, Muller DJ, Palczewski K, Engel A (2006) Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr Opin Struct Biol 16:252–259

    Article  CAS  PubMed  Google Scholar 

  43. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  PubMed  Google Scholar 

  44. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 564:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frins S, Bonigk W, Muller F, Kellner R, Koch KW (1996) Functional characterization of a guanylyl cyclase-activating protein from vertebrate rods. Cloning, heterologous expression, and localization. J Biol Chem 271:8022–8027

    Article  CAS  PubMed  Google Scholar 

  46. Gao Y, Hu H, Ramachandran S, Erickson JW, Cerione RA, Skiniotis G (2019) Structures of the rhodopsin-transducin complex: insights into G-protein activation. Mol Cell 75:781–790 e783. https://doi.org/10.1016/j.molcel.2019.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garriga P, Liu X, Khorana HG (1996) Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C. Proc Natl Acad Sci U S A 93:4560–4564. https://doi.org/10.1073/pnas.93.10.4560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21:90–113

    Article  CAS  PubMed  Google Scholar 

  49. Goricanec D, Stehle R, Egloff P, Grigoriu S, Pluckthun A, Wagner G, Hagn F (2016) Conformational dynamics of a G-protein alpha subunit is tightly regulated by nucleotide binding. Proc Natl Acad Sci U S A 113:E3629–E3638. https://doi.org/10.1073/pnas.1604125113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gragg M, Kim TG, Howell S, Park PS (2016) Wild-type opsin does not aggregate with a misfolded opsin mutant. Biochim Biophys Acta 1858:1850–1859. https://doi.org/10.1016/j.bbamem.2016.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gragg M, Park PS (2018) Misfolded rhodopsin mutants display variable aggregation properties. Biochim Biophys Acta Mol basis Dis 1864:2938–2948. https://doi.org/10.1016/j.bbadis.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  52. Gragg M, Park PS (2019) Detection of misfolded rhodopsin aggregates in cells by Forster resonance energy transfer. Methods Cell Biol 149:87–105. https://doi.org/10.1016/bs.mcb.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  53. Gulati S, Jastrzebska B, Banerjee S, Placeres AL, Miszta P, Gao SQ, Gunderson K, Tochtrop GP, Filipek S, Katayama K, Kiser PD, Mogi M, Stewart PL, Palczewski K (2017) Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Proc Natl Acad Sci U S A 114:E2608–E2615. https://doi.org/10.1073/pnas.1617446114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7

    Article  CAS  PubMed  Google Scholar 

  55. Heck M, Schadel SA, Maretzki D, Bartl FJ, Ritter E, Palczewski K, Hofmann KP (2003) Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II. J Biol Chem 278:3162–3169

    Article  CAS  PubMed  Google Scholar 

  56. Heck M, Schadel SA, Maretzki D, Hofmann KP (2003) Secondary binding sites of retinoids in opsin: characterization and role in regeneration. Vis Res 43:3003–3010

    Article  CAS  PubMed  Google Scholar 

  57. Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25:4–12. https://doi.org/10.1038/s41594-017-0011-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269. https://doi.org/10.1016/s0092-8674(00)80735-7

    Article  CAS  PubMed  Google Scholar 

  59. Hofmann KP, Scheerer P, Hildebrand PW, Choe HW, Park JH, Heck M, Ernst OP (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34:540–552. https://doi.org/10.1016/j.tibs.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  60. Hwa J, Garriga P, Liu X, Khorana HG (1997) Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled. Proc Natl Acad Sci U S A 94:10571–10576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hwa J, Klein-Seetharaman J, Khorana HG (2001) Structure and function in rhodopsin: mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Proc Natl Acad Sci U S A 98:4872–4876. https://doi.org/10.1073/pnas.061632798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hwa J, Reeves PJ, Klein-Seetharaman J, Davidson F, Khorana HG (1999) Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function. Proc Natl Acad Sci U S A 96:1932–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jaeger K, Bruenle S, Weinert T, Guba W, Muehle J, Miyazaki T, Weber M, Furrer A, Haenggi N, Tetaz T, Huang CY, Mattle D, Vonach JM, Gast A, Kuglstatter A, Rudolph MG, Nogly P, Benz J, Dawson RJP, Standfuss J (2019) Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7. Cell 178:1222–1230 e1210. https://doi.org/10.1016/j.cell.2019.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jastrzebska B, Fotiadis D, Jang GF, Stenkamp RE, Engel A, Palczewski K (2006) Functional and structural characterization of rhodopsin oligomers. J Biol Chem 281:11917–11922. https://doi.org/10.1074/jbc.M600422200

    Article  CAS  PubMed  Google Scholar 

  65. Jastrzebska B, Maeda T, Zhu L, Fotiadis D, Filipek S, Engel A, Stenkamp RE, Palczewski K (2004) Functional characterization of rhodopsin monomers and dimers in detergents. J Biol Chem 279:54663–54675

    Article  CAS  PubMed  Google Scholar 

  66. Jin S, Cornwall MC, Oprian DD (2003) Opsin activation as a cause of congenital night blindness. Nat Neurosci 6:731–735. https://doi.org/10.1038/nn1070

    Article  CAS  PubMed  Google Scholar 

  67. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567. https://doi.org/10.1038/nature14656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kang YY, Kuybeda O, de Waal PW, Mukherjee S, Van Eps N, Dutka P, Zhou XE, Bartesaghi A, Erramilli S, Morizumi T, Gu X, Yin YT, Liu P, Jiang Y, Meng X, Zhao GP, Melcher K, Ernst OP, Kossiakoff AA, Subramaniam S, Xu HE (2018) Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature 558:553. https://doi.org/10.1038/s41586-018-0215-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karnik SS, Sakmar TP, Chen HB, Khorana HG (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A 85:8459–8463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923

    Article  CAS  PubMed  Google Scholar 

  71. Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128

    Article  CAS  PubMed  Google Scholar 

  72. Kefalov VJ, Crouch RK, Cornwall MC (2001) Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29:749–755. https://doi.org/10.1016/s0896-6273(01)00249-5

    Article  CAS  PubMed  Google Scholar 

  73. Kennan A, Aherne A, Humphries P (2005) Light in retinitis pigmentosa. Trends Genet 21:103–110

    Article  CAS  PubMed  Google Scholar 

  74. Kim TH, Chung KY, Manglik A, Hansen AL, Dror RO, Mildorf TJ, Shaw DE, Kobilka BK, Prosser RS (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J Am Chem Soc 135:9465–9474. https://doi.org/10.1021/ja404305k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146. https://doi.org/10.1038/nature12133

    Article  CAS  PubMed  Google Scholar 

  76. Kiser PD, Golczak M, Palczewski K (2014) Chemistry of the retinoid (visual) cycle. Chem Rev 114:194–232. https://doi.org/10.1021/cr400107q

    Article  CAS  PubMed  Google Scholar 

  77. Kliger DS, Lewis JW (1995) Spectral and kinetic characterization of visual pigment photointermediates. Israel J Chem 35:289–307

    Article  CAS  Google Scholar 

  78. Knierim B, Hofmann KP, Ernst OP, Hubbell WL (2007) Sequence of late molecular events in the activation of rhodopsin. Proc Natl Acad Sci U S A 104:20290–20295. https://doi.org/10.1073/pnas.0710393104

    Article  PubMed  PubMed Central  Google Scholar 

  79. Koch KW, Duda T, Sharma RK (2002) Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol Cell Biochem 230:97–106

    Article  CAS  PubMed  Google Scholar 

  80. Kono M, Goletz PW, Crouch RK (2008) 11-cis- and all-trans-retinols can activate rod opsin: rational design of the visual cycle. Biochemistry 47:7567–7571. https://doi.org/10.1021/bi800357b

    Article  CAS  PubMed  Google Scholar 

  81. Kota P, Reeves PJ, Rajbhandary UL, Khorana HG (2006) Opsin is present as dimers in COS1 cells: identification of amino acids at the dimeric interface. Proc Natl Acad Sci U S A 103:3054–3059. https://doi.org/10.1073/pnas.0510982103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krebs MP, Holden DC, Joshi P, Clark CL 3rd, Lee AH, Kaushal S (2010) Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue. J Mol Biol 395:1063–1078. https://doi.org/10.1016/j.jmb.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  83. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  CAS  PubMed  Google Scholar 

  84. Lamb TD (1996) Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc Natl Acad Sci U S A 93:566–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lefkowitz RJ (2000) The superfamily of heptahelical receptors. Nat Cell Biol 2:E133–E136

    Article  CAS  PubMed  Google Scholar 

  86. Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14:303–307

    Article  CAS  PubMed  Google Scholar 

  87. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    Article  CAS  PubMed  Google Scholar 

  88. Li T, Sandberg MA, Pawlyk BS, Rosner B, Hayes KC, Dryja TP, Berson EL (1998) Effect of vitamin A supplementation on rhodopsin mutants threonine-17 --> methionine and proline-347 --> serine in transgenic mice and in cell cultures. Proc Natl Acad Sci U S A 95:11933–11938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662

    Article  CAS  PubMed  Google Scholar 

  90. Lin JC, Liu HL (2006) Protein conformational diseases: from mechanisms to drug designs. Curr Drug Discov Technol 3:145–153

    Article  CAS  PubMed  Google Scholar 

  91. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949. https://doi.org/10.1126/science.1146361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lodowski DT, Salom D, Le Trong I, Teller DC, Ballesteros JA, Palczewski K, Stenkamp RE (2007) Crystal packing analysis of Rhodopsin crystals. J Struct Biol 158:455–462. https://doi.org/10.1016/j.jsb.2007.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lohse MJ (2010) Dimerization in GPCR mobility and signaling. Curr Opin Pharmacol 10:53–58. https://doi.org/10.1016/j.coph.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  94. Makino CL, Riley CK, Looney J, Crouch RK, Okada T (2010) Binding of more than one retinoid to visual opsins. Biophys J 99:2366–2373. https://doi.org/10.1016/j.bpj.2010.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mattle D, Kuhn B, Aebi J, Bedoucha M, Kekilli D, Grozinger N, Alker A, Rudolph MG, Schmid G, Schertler GFX, Hennig M, Standfuss J, Dawson RJP (2018) Ligand channel in pharmacologically stabilized rhodopsin. Proc Natl Acad Sci U S A 115:3640–3645. https://doi.org/10.1073/pnas.1718084115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McAlear SD, Kraft TW, Gross AK (2010) 1 rhodopsin mutations in congenital night blindness. Adv Exp Med Biol 664:263–272. https://doi.org/10.1007/978-1-4419-1399-9_30

    Article  CAS  PubMed  Google Scholar 

  97. McBee JK, Palczewski K, Baehr W, Pepperberg DR (2001) Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 20:469–529

    Article  CAS  PubMed  Google Scholar 

  98. Melia TJ Jr, Cowan CW, Angleson JK, Wensel TG (1997) A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin. Biophys J 73:3182–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mendes HF, Cheetham ME (2008) Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Hum Mol Genet 17:3043–3054. https://doi.org/10.1093/hmg/ddn202

    Article  CAS  PubMed  Google Scholar 

  100. Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  CAS  PubMed  Google Scholar 

  101. Milligan G (2010) The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr Opin Pharmacol 10:23–29. https://doi.org/10.1016/j.coph.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  102. Mirzadegan T, Benko G, Filipek S, Palczewski K (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42:2759–2767

    Article  CAS  PubMed  Google Scholar 

  103. Mishra AK, Gragg M, Stoneman MR, Biener G, Oliver JA, Miszta P, Filipek S, Raicu V, Park PS (2016) Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 473:3819–3836. https://doi.org/10.1042/BCJ20160422

    Article  CAS  PubMed  Google Scholar 

  104. Nakamichi H, Buss V, Okada T (2007) Photoisomerization mechanism of rhodopsin and 9-cis-rhodopsin revealed by X-ray crystallography. Biophys J 92:L106–L108. https://doi.org/10.1529/biophysj.107.108225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nakamichi H, Okada T (2006) Crystallographic analysis of primary visual photochemistry. Angew Chem Int Ed Eng 45:4270–4273. https://doi.org/10.1002/anie.200600595

    Article  CAS  Google Scholar 

  106. Nakamichi H, Okada T (2006) Local peptide movement in the photoreaction intermediate of rhodopsin. Proc Natl Acad Sci U S A 103:12729–12734. https://doi.org/10.1073/pnas.0601765103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nakamichi H, Okada T (2007) X-ray crystallographic analysis of 9-cis-rhodopsin, a model analogue visual pigment. Photochem Photobiol 83:232–235. https://doi.org/10.1562/2006-13-Ra-920

    Article  CAS  PubMed  Google Scholar 

  108. Noel JP, Hamm HE, Sigler PB (1993) The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature 366:654–663. https://doi.org/10.1038/366654a0

    Article  CAS  PubMed  Google Scholar 

  109. Noorwez SM, Malhotra R, McDowell JH, Smith KA, Krebs MP, Kaushal S (2004) Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 279:16278–16284. https://doi.org/10.1074/jbc.M312101200

    Article  CAS  PubMed  Google Scholar 

  110. Noorwez SM, Sama RR, Kaushal S (2009) Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal. J Biol Chem 284:33333–33342. https://doi.org/10.1074/jbc.M109.043364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Okada T, Ernst OP, Palczewski K, Hofmann KP (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 26:318–324

    Article  CAS  PubMed  Google Scholar 

  112. Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci U S A 99:5982–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 342:571–583

    Article  CAS  PubMed  Google Scholar 

  114. Palczewski K (1997) GTP-binding-protein-coupled receptor kinases--two mechanistic models. Eur J Biochem 248:261–269

    Article  CAS  PubMed  Google Scholar 

  115. Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767. https://doi.org/10.1146/annurev.biochem.75.103004.142743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Palczewski K (2010) Oligomeric forms of G protein-coupled receptors (GPCRs). Trends Biochem Sci 35:595–600. https://doi.org/10.1016/j.tibs.2010.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Palczewski K (2010) Retinoids for treatment of retinal diseases. Trends Pharmacol Sci 31:284–295. https://doi.org/10.1016/j.tips.2010.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  119. Park JH, Morizumi T, Li Y, Hong JE, Pai EF, Hofmann KP, Choe HW, Ernst OP (2013) Opsin, a structural model for olfactory receptors? Angew Chem Int Ed Eng 52:11021–11024. https://doi.org/10.1002/anie.201302374

    Article  CAS  Google Scholar 

  120. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187. https://doi.org/10.1038/nature07063

    Article  CAS  PubMed  Google Scholar 

  121. Park PS, Filipek S, Wells JW, Palczewski K (2004) Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry 43:15643–15656

    Article  CAS  PubMed  Google Scholar 

  122. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  PubMed  Google Scholar 

  123. Ploier B, Caro LN, Morizumi T, Pandey K, Pearring JN, Goren MA, Finnemann SC, Graumann J, Arshavsky VY, Dittman JS, Ernst OP, Menon AK (2016) Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants. Nat Commun 7:12832. https://doi.org/10.1038/ncomms12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pulvermuller A, Palczewski K, Hofmann KP (1993) Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation. Biochemistry 32:14082–14088

    Article  CAS  PubMed  Google Scholar 

  125. Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52. https://doi.org/10.1038/nn.2234

    Article  CAS  PubMed  Google Scholar 

  126. Raimondi F, Seeber M, Benedetti PG, Fanelli F (2008) Mechanisms of inter- and intramolecular communication in GPCRs and G proteins. J Am Chem Soc 130:4310–4325. https://doi.org/10.1021/ja077268b

    Article  CAS  PubMed  Google Scholar 

  127. Rakoczy EP, Kiel C, McKeone R, Stricher F, Serrano L (2010) Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J Mol Biol 405:584–606. https://doi.org/10.1016/j.jmb.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  128. Rao VR, Cohen GB, Oprian DD (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367:639–642. https://doi.org/10.1038/367639a0

    Article  CAS  PubMed  Google Scholar 

  129. Rasmussen SG, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 469:175–181. https://doi.org/10.1038/nature10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Reeves PJ, Hwa J, Khorana HG (1999) Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket. Proc Natl Acad Sci U S A 96:1927–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Richards JE, Scott KM, Sieving PA (1995) Disruption of conserved rhodopsin disulfide bond by Cys187Tyr mutation causes early and severe autosomal dominant retinitis pigmentosa. Ophthalmology 102:669–677

    Article  CAS  PubMed  Google Scholar 

  132. Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ (2004) Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. J Biol Chem 279:48102–48111

    Article  CAS  PubMed  Google Scholar 

  133. Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) Electron crystallography reveals the structure of metarhodopsin I. EMBO J 23:3609–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG, Palczewski K (2011) Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem 286:10551–10567. https://doi.org/10.1074/jbc.M110.209759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A 103:16123–16128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sandberg MN, Amora TL, Ramos LS, Chen MH, Knox BE, Birge RR (2011) Glutamic acid 181 is negatively charged in the bathorhodopsin photointermediate of visual rhodopsin. J Am Chem Soc 133:2808–2811. https://doi.org/10.1021/ja1094183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sanders CR, Myers JK (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33:25–51. https://doi.org/10.1146/annurev.biophys.33.110502.140348

    Article  CAS  PubMed  Google Scholar 

  138. Sato K, Morizumi T, Yamashita T, Shichida Y (2010) Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide. Biochemistry 49:736–741. https://doi.org/10.1021/bi9018412

    Article  CAS  PubMed  Google Scholar 

  139. Schadel SA, Heck M, Maretzki D, Filipek S, Teller DC, Palczewski K, Hofmann KP (2003) Ligand channeling within a G-protein-coupled receptor. The entry and exit of retinals in native opsin. J Biol Chem 278:24896–24903

    Article  PubMed  CAS  Google Scholar 

  140. Scheerer P, Heck M, Goede A, Park JH, Choe HW, Ernst OP, Hofmann KP, Hildebrand PW (2009) Structural and kinetic modeling of an activating helix switch in the rhodopsin-transducin interface. Proc Natl Acad Sci U S A 106:10660–10665. https://doi.org/10.1073/pnas.0900072106

    Article  PubMed  PubMed Central  Google Scholar 

  141. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502. https://doi.org/10.1038/nature07330

    Article  CAS  PubMed  Google Scholar 

  142. Scheerer P, Sommer ME (2017) Structural mechanism of arrestin activation. Curr Opin Struct Biol 45:160–169. https://doi.org/10.1016/j.sbi.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  143. Shenker A (1995) G protein-coupled receptor structure and function: the impact of disease-causing mutations. Bailliere Clin Endocrinol Metab 9:427–451

    Article  CAS  Google Scholar 

  144. Sieving PA, Fowler ML, Bush RA, Machida S, Calvert PD, Green DG, Makino CL, McHenry CL (2001) Constitutive “light” adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss. J Neurosci 21:5449–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M (1995) Dark-light: model for nightblindness from the human rhodopsin Gly-90-->Asp mutation. Proc Natl Acad Sci U S A 92:880–884. https://doi.org/10.1073/pnas.92.3.880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Singhal A, Guo Y, Matkovic M, Schertler G, Deupi X, Yan EC, Standfuss J (2016) Structural role of the T94I rhodopsin mutation in congenital stationary night blindness. EMBO Rep 17:1431–1440. https://doi.org/10.15252/embr.201642671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT, Tesmer JJ, Veprintsev D, Deupi X, Gurevich VV, Schertler GF, Standfuss J (2013) Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO Rep. https://doi.org/10.1038/embor.2013.44

  148. Standfuss J, Edwards PC, D'Antona A, Fransen M, Xie G, Oprian DD, Schertler GF (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656–660. https://doi.org/10.1038/nature09795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372:1179–1188. https://doi.org/10.1016/j.jmb.2007.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Stenkamp RE (2008) Alternative models for two crystal structures of bovine rhodopsin. Acta Crystallogr D Biol Crystallogr D64:902–904. https://doi.org/10.1107/S0907444908017162

    Article  CAS  PubMed  Google Scholar 

  151. Stojanovic A, Hwang I, Khorana HG, Hwa J (2003) Retinitis pigmentosa rhodopsin mutations L125R and A164V perturb critical interhelical interactions: new insights through compensatory mutations and crystal structure analysis. J Biol Chem 278:39020–39028. https://doi.org/10.1074/jbc.M303625200

    Article  CAS  PubMed  Google Scholar 

  152. Suda K, Filipek S, Palczewski K, Engel A, Fotiadis D (2004) The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes. Mol Membr Biol 21:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sun D, Flock T, Deupi X, Maeda S, Matkovic M, Mendieta S, Mayer D, Dawson RJ, Schertler GF, Babu MM, Veprintsev DB (2015) Probing Galphai1 protein activation at single-amino acid resolution. Nat Struct Mol Biol 22:686–694. https://doi.org/10.1038/nsmb.3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sung CH, Davenport CM, Nathans J (1993) Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. J Biol Chem 268:26645–26649

    Article  CAS  PubMed  Google Scholar 

  155. Sung CH, Schneider BG, Agarwal N, Papermaster DS, Nathans J (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A 88:8840–8844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Szczepek M, Beyriere F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5:4801. https://doi.org/10.1038/ncomms5801

    Article  CAS  PubMed  Google Scholar 

  157. Tam BM, Moritz OL (2009) The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. J Neurosci 29:15145–15154. https://doi.org/10.1523/JNEUROSCI.4259-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tao YX (2008) Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol Ther 120:129–148. https://doi.org/10.1016/j.pharmthera.2008.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40:7761–7772

    Article  CAS  PubMed  Google Scholar 

  160. Themmen AP, Martens JW, Brunner HG (1998) Activating and inactivating mutations in LH receptors. Mol Cell Endocrinol 145:137–142

    Article  CAS  PubMed  Google Scholar 

  161. Tsai CJ, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, Flock T, Taylor NM, Mohammed I, Matile H, Dawson RJ, Deupi X, Stahlberg H, Schertler G (2019) Cryo-EM structure of the rhodopsin-Galphai-betagamma complex reveals binding of the rhodopsin C-terminal tail to the gbeta subunit. Elife 8. https://doi.org/10.7554/eLife.46041

  162. Tsai CJ, Pamula F, Nehme R, Muhle J, Weinert T, Flock T, Nogly P, Edwards PC, Carpenter B, Gruhl T, Ma P, Deupi X, Standfuss J, Tate CG, Schertler GFX (2018) Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity. Sci Adv 4:eaat7052. https://doi.org/10.1126/sciadv.aat7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Van Eps N, Preininger AM, Alexander N, Kaya AI, Meier S, Meiler J, Hamm HE, Hubbell WL (2011) Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc Natl Acad Sci U S A 108:9420–9424. https://doi.org/10.1073/pnas.1105810108

    Article  PubMed  PubMed Central  Google Scholar 

  164. Vishveshwara S, Ghosh A, Hansia P (2009) Intra and inter-molecular communications through protein structure network. Curr Protein Pept Sci 10:146–160

    Article  CAS  PubMed  Google Scholar 

  165. Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971. https://doi.org/10.1146/annurev-biochem-062708-134043

    Article  CAS  PubMed  Google Scholar 

  166. Yan EC, Kazmi MA, De S, Chang BS, Seibert C, Marin EP, Mathies RA, Sakmar TP (2002) Function of extracellular loop 2 in rhodopsin: glutamic acid 181 modulates stability and absorption wavelength of metarhodopsin II. Biochemistry 41:3620–3627

    Article  CAS  PubMed  Google Scholar 

  167. Yan EC, Kazmi MA, Ganim Z, Hou JM, Pan D, Chang BS, Sakmar TP, Mathies RA (2003) Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc Natl Acad Sci U S A 100:9262–9267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang M, Wang W (2003) Organization of signaling complexes by PDZ-domain scaffold proteins. Acc Chem Res 36:530–538

    Article  CAS  PubMed  Google Scholar 

  169. Zhao DY, Poge M, Morizumi T, Gulati S, Van Eps N, Zhang J, Miszta P, Filipek S, Mahamid J, Plitzko JM, Baumeister W, Ernst OP, Palczewski K (2019) Cryo-EM structure of the native rhodopsin dimer in nanodiscs. J Biol Chem 294:14215–14230. https://doi.org/10.1074/jbc.RA119.010089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhou XE, Gao X, Barty A, Kang YY, He YZ, Liu W, Ishchenko A, White TA, Yefanov O, Han GW, Xu QP, de Waal PW, Suino-Powell KM, Boutet S, Williams GJ, Wang MT, Li DF, Caffrey M, Chapman HN, Spence JCH, Fromme P, Weierstall U, Stevens RC, Cherezov V, Melcher K, Xu HE (2016) X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Sci Data 3:160021. https://doi.org/10.1038/Sdata.2016.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhou XE, He YZ, de Waal PW, Gao X, Kang YY, Van Eps N, Yin YT, Pal K, Goswami D, White TA, Barty A, Latorraca NR, Chapman HN, Hubbell WL, Dror RO, Stevens RC, Cherezov V, Gurevich VV, Griffin PR, Ernst OP, Melcher K, Xu HE (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170:457–469. https://doi.org/10.1016/j.cell.2017.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Drawings were done by means of the software PYMOL 1.1r1 (http://pymol.sourceforge.net/). We thank Krzysztof Palczewski for providing the coordinates of the latest rhodopsin oligomeric structural model.

Funding

This study was supported by a Telethon-Italy grant [GGP11210], by a Fondazione Roma grant (call for proposals 2013 on Retinitis Pigmentosa), and by a FAR2018 grant to both FF and VM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Fanelli.

Ethics declarations

Consent for publication

The authors give consent to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Function and Dysfunction in Vertebrate Photoreceptor Cells in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanelli, F., Felline, A. & Marigo, V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch - Eur J Physiol 473, 1339–1359 (2021). https://doi.org/10.1007/s00424-021-02546-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02546-x

Keywords

Navigation