Skip to main content

Advertisement

Log in

Supramolecular organization of rhodopsin in rod photoreceptor cell membranes

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Rhodopsin is the light receptor in rod photoreceptor cells that initiates scotopic vision. Studies on the light receptor span well over a century, yet questions about the organization of rhodopsin within the photoreceptor cell membrane still persist and a consensus view on the topic is still elusive. Rhodopsin has been intensely studied for quite some time, and there is a wealth of information to draw from to formulate an organizational picture of the receptor in native membranes. Early experimental evidence in apparent support for a monomeric arrangement of rhodopsin in rod photoreceptor cell membranes is contrasted and reconciled with more recent visual evidence in support of a supramolecular organization of rhodopsin. What is known so far about the determinants of forming a supramolecular structure and possible functional roles for such an organization are also discussed. Many details are still missing on the structural and functional properties of the supramolecular organization of rhodopsin in rod photoreceptor cell membranes. The emerging picture presented here can serve as a springboard towards a more in-depth understanding of the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albert AD, Young JE, Paw Z (1998) Phospholipid fatty acyl spatial distribution in bovine rod outer segment disk membranes. Biochim Biophys Acta 1368:52–60

    Article  CAS  PubMed  Google Scholar 

  2. Andrews LD, Cohen AI (1979) Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs. J Cell Biol 81:215–228

    Article  CAS  PubMed  Google Scholar 

  3. Banerjee S, Huber T, Sakmar TP (2008) Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J Mol Biol 377:1067–1081. https://doi.org/10.1016/j.jmb.2008.01.066

    Article  CAS  PubMed  Google Scholar 

  4. Baroin A, Thomas DD, Osborne B, Devaux PF (1977) Saturation transfer electron paramagnetic resonance on membrane-bound proteins. I-Rotational diffusion of rhodopsin in the visual receptor membrane. Biochem Biophys Res Commun 78:442–447. https://doi.org/10.1016/0006-291x(77)91274-8

    Article  CAS  PubMed  Google Scholar 

  5. Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875-14881. doi:https://doi.org/10.1074/jbc.M701433200

  6. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428. https://doi.org/10.1074/jbc.M110.151043

    Article  CAS  PubMed  Google Scholar 

  7. Baylor DA, Lamb TD (1982) Local effects of bleaching in retinal rods of the toad. J Physiol 328:49–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol 288:613–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beyriere F, Sommer ME, Szczepek M, Bartl FJ, Hofmann KP, Heck M, Ritter E (2015) Formation and decay of the arrestin.rhodopsin complex in native disc membranes. J Biol Chem 290:12919–12928. https://doi.org/10.1074/jbc.M114.620898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blasie JK, Worthington CR (1969) Molecular localization of frog retinal receptor photopigment by electron microscopy and low-angle X-ray diffraction. J Mol Biol 39:407–416

    Article  CAS  PubMed  Google Scholar 

  11. Blasie JK, Worthington CR (1969) Planar liquid-like arrangement of photopigment molecules in frog retinal receptor disk membranes. J Mol Biol 39:417–439

    Article  CAS  PubMed  Google Scholar 

  12. Blaurock AE, Stoeckenius W (1971) Structure of the purple membrane. Nat New Biol 233:152–155. https://doi.org/10.1038/newbio233152a0

    Article  CAS  PubMed  Google Scholar 

  13. Boesze-Battaglia K, Dispoto J, Kahoe MA (2002) Association of a photoreceptor-specific tetraspanin protein, ROM-1, with triton X-100-resistant membrane rafts from rod outer segment disk membranes. J Biol Chem 277:41843–41849. https://doi.org/10.1074/jbc.M207111200

    Article  CAS  PubMed  Google Scholar 

  14. Boesze-Battaglia K, Fliesler SJ, Albert AD (1990) Relationship of cholesterol content to spatial distribution and age of disc membranes in retinal rod outer segments. J Biol Chem 265:18867–18870

    Article  CAS  PubMed  Google Scholar 

  15. Boll F (1977) On the anatomy and physiology of the retina. Vis Res 17:1249–1265

    Article  CAS  PubMed  Google Scholar 

  16. Borochov-Neori H, Fortes PA, Montal M (1983) Rhodopsin in reconstituted phospholipid vesicles. 2. Rhodopsin-rhodopsin interactions detected by resonance energy transfer. Biochemistry 22:206–213

    Article  CAS  PubMed  Google Scholar 

  17. Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91:4464–4477. https://doi.org/10.1529/biophysj.106.082776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brett M, Findlay JB (1979) Investigation of the organization of rhodopsin in the sheep photoreceptor membrane by using cross-linking reagents. Biochem J 177:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buzhynskyy N, Salesse C, Scheuring S (2011) Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. J Mol Recognit 24:483–489. https://doi.org/10.1002/jmr.1086

    Article  CAS  PubMed  Google Scholar 

  20. Caldwell RB, McLaughlin BJ (1985) Freeze-fracture study of filipin binding in photoreceptor outer segments and pigment epithelium of dystrophic and normal retinas. J Comp Neurol 236:523–537. https://doi.org/10.1002/cne.902360408

    Article  CAS  PubMed  Google Scholar 

  21. Cangiano L, Dell’Orco D (2013) Detecting single photons: a supramolecular matter? FEBS Lett 587:1–4. https://doi.org/10.1016/j.febslet.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  22. Chabre M (1975) X-ray diffraction studies of retinal rods. I. Structure of the disc membrane, effect of illumination. Biochim Biophys Acta 382:322–335

    Article  CAS  PubMed  Google Scholar 

  23. Chabre M, Cone R, Saibil H (2003) Biophysics: is rhodopsin dimeric in native retinal rods? Nature 426:30–31

    Article  CAS  PubMed  Google Scholar 

  24. Chabre M, le Maire M (2005) Monomeric G-protein-coupled receptor as a functional unit. Biochemistry 44:9395–9403

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K (2012) Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration. J Biol Chem 287:5059–5069. https://doi.org/10.1074/jbc.M111.315432

    Article  CAS  PubMed  Google Scholar 

  26. Chen YS, Hubbell WL (1973) Temperature- and light-dependent structural changes in rhodopsin-lipid membranes. Exp Eye Res 17:517–532

    Article  CAS  PubMed  Google Scholar 

  27. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655. https://doi.org/10.1038/nature09789

    Article  CAS  PubMed  Google Scholar 

  28. Cicuta P, Keller SL, Veatch SL (2007) Diffusion of liquid domains in lipid bilayer membranes. J Phys Chem B 111:3328–3331. https://doi.org/10.1021/jp0702088

    Article  CAS  PubMed  Google Scholar 

  29. Comar WD, Schubert SM, Jastrzebska B, Palczewski K, Smith AW (2014) Time-resolved fluorescence spectroscopy measures clustering and mobility of a G protein-coupled receptor opsin in live cell membranes. J Am Chem Soc 136:8342–8349. https://doi.org/10.1021/ja501948w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cone RA (1972) Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol 236:39–43

    Article  CAS  PubMed  Google Scholar 

  31. Corless JM, Cobbs WH 3rd, Costello MJ, Robertson JD (1976) On the asymmetry of frog retinal rod outer segment disk membranes. Exp Eye Res 23:295–324. https://doi.org/10.1016/0014-4835(76)90130-5

    Article  CAS  PubMed  Google Scholar 

  32. Dell’Orco D (2013) A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors. FEBS Lett 587:2060–2066. https://doi.org/10.1016/j.febslet.2013.05.017

    Article  CAS  PubMed  Google Scholar 

  33. Dell’Orco D, Koch KW (2011) A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision. Biochem J 440:263–271. https://doi.org/10.1042/BJ20110871

    Article  CAS  PubMed  Google Scholar 

  34. Dell’Orco D, Schmidt H (2008) Mesoscopic Monte Carlo simulations of stochastic encounters between photoactivated rhodopsin and transducin in disc membranes. J Phys Chem B 112:4419–4426

    Article  PubMed  CAS  Google Scholar 

  35. Downer NW (1985) Cross-linking of dark-adapted frog photoreceptor disk membranes. Evidence for monomeric rhodopsin. Biophys J 47:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Downer NW, Cone RA (1985) Transient dichroism in photoreceptor membranes indicates that stable oligomers of rhodopsin do not form during excitation. Biophys J 47:277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Edrington TC, Bennett M, Albert AD (2008) Calorimetric studies of bovine rod outer segment disk membranes support a monomeric unit for both rhodopsin and opsin. Biophys J 95:2859–2866. https://doi.org/10.1529/biophysj.108.128868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ernst OP, Gramse V, Kolbe M, Hofmann KP, Heck M (2007) Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci U S A 104:10859–10864. https://doi.org/10.1073/pnas.0701967104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feldman TB, Ivankov OI, Kuklin AI, Murugova TN, Yakovleva MA, Smitienko OA, Kolchugina IB, Round A, Gordeliy VI, Belushkin AV, Ostrovsky MA (2019) Small-angle neutron and X-ray scattering analysis of the supramolecular organization of rhodopsin in photoreceptor membrane. Biochim Biophys Acta Biomembr 1861:183000. https://doi.org/10.1016/j.bbamem.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  40. Filizola M, Wang SX, Weinstein H (2006) Dynamic models of G-protein coupled receptor dimers: indications of asymmetry in the rhodopsin dimer from molecular dynamics simulations in a POPC bilayer. J Comput Aided Mol Des 20:405–416. https://doi.org/10.1007/s10822-006-9053-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fisher KA, Stoeckenius W (1977) Freeze-fractured purple membrane particles: protein content. Science 197:72–74. https://doi.org/10.1126/science.867052

    Article  CAS  PubMed  Google Scholar 

  42. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  PubMed  Google Scholar 

  43. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 564:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao Y, Hu H, Ramachandran S, Erickson JW, Cerione RA, Skiniotis G (2019) Structures of the rhodopsin-transducin complex: insights into G-protein activation. Mol Cell 75(781-790):e783. https://doi.org/10.1016/j.molcel.2019.06.007

    Article  CAS  Google Scholar 

  45. Govardovskii VI, Korenyak DA, Shukolyukov SA, Zueva LV (2009) Lateral diffusion of rhodopsin in photoreceptor membrane: a reappraisal. Mol Vis 15:1717–1729

    PubMed  PubMed Central  Google Scholar 

  46. Gragg M, Kim TG, Howell S, Park PS (2016) Wild-type opsin does not aggregate with a misfolded opsin mutant. Biochim Biophys Acta 1858:1850–1859. https://doi.org/10.1016/j.bbamem.2016.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gragg M, Park PS (2018) Misfolded rhodopsin mutants display variable aggregation properties. Biochim Biophys Acta 1864:2938–2948. https://doi.org/10.1016/j.bbadis.2018.06.004

    Article  CAS  PubMed Central  Google Scholar 

  48. Gragg M, Park PS (2019) Detection of misfolded rhodopsin aggregates in cells by Forster resonance energy transfer. Methods Cell Biol 149:87–105. https://doi.org/10.1016/bs.mcb.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  49. Gunkel M, Schoneberg J, Alkhaldi W, Irsen S, Noe F, Kaupp UB, Al-Amoudi A (2015) Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Structure 23:628–638. https://doi.org/10.1016/j.str.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  50. Gupta BD, Williams TP (1990) Lateral diffusion of visual pigments in toad (Bufo marinus) rods and in catfish (Ictalurus punctatus) cones. J Physiol 430:483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M, Struwe WB, Drew D, Baldwin AJ, Stansfeld PJ, Robinson CV (2017) The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541:421–424. https://doi.org/10.1038/nature20820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007) Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci U S A 104:3125–3128. https://doi.org/10.1073/pnas.0610886104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong SL, Rao JK, Argos P (1983) The structure of bovine rhodopsin. Biophys Struct Mech 9:235–244

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi F, Saito N, Tanimoto Y, Okada K, Morigaki K, Seno K, Maekawa S (2019) Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs. Commun Biol 2:209. https://doi.org/10.1038/s42003-019-0459-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hecht S, Shlaer S, Pirenne MH (1942) Energy, Quanta, and Vision. J Gen Physiol 25:819–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hegener O, Prenner L, Runkel F, Baader SL, Kappler J, Haberlein H (2004) Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry 43:6190–6199. https://doi.org/10.1021/bi035928t

    Article  CAS  PubMed  Google Scholar 

  57. Herrick-Davis K, Grinde E, Lindsley T, Teitler M, Mancia F, Cowan A, Mazurkiewicz JE (2015) Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells. Mol Pharmacol 87:660–673. https://doi.org/10.1124/mol.114.096636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jastrzebska B, Chen Y, Orban T, Jin H, Hofmann L, Palczewski K (2015) Disruption of rhodopsin dimerization with synthetic peptides targeting an interaction interface. J Biol Chem 290:25728–25744. https://doi.org/10.1074/jbc.M115.662684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jastrzebska B, Fotiadis D, Jang GF, Stenkamp RE, Engel A, Palczewski K (2006) Functional and structural characterization of rhodopsin oligomers. J Biol Chem 281:11917–11922

    Article  CAS  PubMed  Google Scholar 

  60. Jastrzebska B, Maeda T, Zhu L, Fotiadis D, Filipek S, Engel A, Stenkamp RE, Palczewski K (2004) Functional characterization of rhodopsin monomers and dimers in detergents. J Biol Chem 279:54663–54675

    Article  CAS  PubMed  Google Scholar 

  61. Jastrzebska B, Orban T, Golczak M, Engel A, Palczewski K (2013) Asymmetry of the rhodopsin dimer in complex with transducin. FASEB J 27:1572–1584. https://doi.org/10.1096/fj.12-225383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jastrzebska B, Ortega JT, Park PSH (2020) Chapter 5 - supramolecular structure of opsins. In: Jastrzebska B, Park PSH (eds) GPCRs. Academic Press, pp 81-95. https://doi.org/10.1016/B978-0-12-816228-6.00005-2

  63. Jastrzebska B, Ringler P, Lodowski DT, Moiseenkova-Bell V, Golczak M, Muller SA, Palczewski K, Engel A (2011) Rhodopsin-transducin heteropentamer: three-dimensional structure and biochemical characterization. J Struct Biol 176:387–394. https://doi.org/10.1016/j.jsb.2011.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jastrzebska B, Ringler P, Palczewski K, Engel A (2013) The rhodopsin-transducin complex houses two distinct rhodopsin molecules. J Struct Biol 182:164–172. https://doi.org/10.1016/j.jsb.2013.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaneshige Y, Hayashi F, Morigaki K, Tanimoto Y, Yamashita H, Fujii M, Awazu A (2020) Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: coarse-grained molecular dynamics simulation of disk membranes. PLoS One 15:e0226123. https://doi.org/10.1371/journal.pone.0226123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561-567. doi:https://doi.org/10.1038/nature14656

  67. Khan SM, Bolen W, Hargrave PA, Santoro MM, McDowell JH (1991) Differential scanning calorimetry of bovine rhodopsin in rod-outer-segment disk membranes. Eur J Biochem 200:53–59. https://doi.org/10.1111/j.1432-1033.1991.tb21047.x

    Article  CAS  PubMed  Google Scholar 

  68. Kim SR, Jang YP, Jockusch S, Fishkin NE, Turro NJ, Sparrow JR (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci U S A 104:19273–19278. https://doi.org/10.1073/pnas.0708714104

    Article  PubMed  PubMed Central  Google Scholar 

  69. Knepp AM, Periole X, Marrink SJ, Sakmar TP, Huber T (2012) Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Biochemistry 51:1819–1821. https://doi.org/10.1021/bi3001598

    Article  CAS  PubMed  Google Scholar 

  70. Kota P, Reeves PJ, Rajbhandary UL, Khorana HG (2006) Opsin is present as dimers in COS1 cells: identification of amino acids at the dimeric interface. Proc Natl Acad Sci U S A

  71. Krebs W, Kuhn H (1977) Structure of isolated bovine rod outer segment membranes. Exp Eye Res 25:511–526

    Article  CAS  PubMed  Google Scholar 

  72. Kuhne W (1977) Chemical processes in the retina. Vis Res 17:1269–1316

    Article  CAS  PubMed  Google Scholar 

  73. Kusumi A, Hyde JS (1982) Spin-label saturation-transfer electron spin resonance detection of transient association of rhodopsin in reconstituted membranes. Biochemistry 21:5978–5983. https://doi.org/10.1021/bi00266a039

    Article  CAS  PubMed  Google Scholar 

  74. Kusumi A, Ohnishi S, Ito T, Yoshizawa T (1978) Rotational motion of rhodopsin in visual receptor membrane as studied by saturation transfer spectroscopy. Biochim Biophys Acta 507:539–543. https://doi.org/10.1016/0005-2736(78)90362-0

    Article  CAS  Google Scholar 

  75. Lewis TR, Shores CR, Cady MA, Hao Y, Arshavsky VY, Burns ME (2020) The F220C and F45L rhodopsin mutations identified in retinitis pigmentosa patients do not cause pathology in mice. Sci Rep 10:7538. https://doi.org/10.1038/s41598-020-64437-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662

    Article  CAS  PubMed  Google Scholar 

  77. Liang Y, Fotiadis D, Maeda T, Maeda A, Modzelewska A, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) Rhodopsin signaling and organization in heterozygote rhodopsin knockout mice. J Biol Chem 279:48189–48196

    Article  CAS  PubMed  Google Scholar 

  78. Liebman PA, Entine G (1974) Lateral diffusion of visual pigment in photorecptor disk membranes. Science 185:457–459

    Article  CAS  PubMed  Google Scholar 

  79. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50. https://doi.org/10.1126/science.1174621

    Article  CAS  PubMed  Google Scholar 

  80. Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693. https://doi.org/10.1074/jbc.M804505200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Makino CL, Howard LN, Williams TP (1990) Axial gradients of rhodopsin in light-exposed retinal rods of the toad. J Gen Physiol 96:1199–1220

    Article  CAS  PubMed  Google Scholar 

  82. Mallory DP, Gutierrez E, Pinkevitch M, Klinginsmith C, Comar WD, Roushar FJ, Schlebach JP, Smith AW, Jastrzebska B (2018) The retinitis pigmentosa-linked mutations in transmembrane Helix 5 of rhodopsin disrupt cellular trafficking regardless of oligomerization state. Biochemistry 57:5188–5201. https://doi.org/10.1021/acs.biochem.8b00403

    Article  CAS  PubMed  Google Scholar 

  83. Mansoor SE, Palczewski K, Farrens DL (2006) Rhodopsin self-associates in asolectin liposomes. Proc Natl Acad Sci U S A 103:3060–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martin RE, Elliott MH, Brush RS, Anderson RE (2005) Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Invest Ophthalmol Vis Sci 46:1147–1154. https://doi.org/10.1167/iovs.04-1207

    Article  PubMed  Google Scholar 

  85. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A 97:7154–7159. https://doi.org/10.1073/pnas.130110497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mazzolini M, Facchetti G, Andolfi L, Proietti Zaccaria R, Tuccio S, Treu J, Altafini C, Di Fabrizio EM, Lazzarino M, Rapp G, Torre V (2015) The phototransduction machinery in the rod outer segment has a strong efficacy gradient. Proc Natl Acad Sci U S A 112:E2715-E2724. doi:https://doi.org/10.1073/pnas.1423162112

  87. McCaslin DR, Tanford C (1981) Different states of aggregation for unbleached and bleached rhodopsin after isolation in two different detergents. Biochemistry 20:5212–5221. https://doi.org/10.1021/bi00521a018

    Article  CAS  PubMed  Google Scholar 

  88. Medina R, Perdomo D, Bubis J (2004) The hydrodynamic properties of dark- and light-activated states of n-dodecyl beta-D-maltoside-solubilized bovine rhodopsin support the dimeric structure of both conformations. J Biol Chem 279:39565–39573

    Article  CAS  PubMed  Google Scholar 

  89. Medina R, Perdomo D, Moller C, Bubis J (2020) Cross-linking of bovine rhodopsin with sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate affects its functionality. Biochem J 477:2295-2312. doi:https://doi.org/10.1042/BCJ20200376

  90. Mishra AK, Gragg M, Stoneman MR, Biener G, Oliver JA, Miszta P, Filipek S, Raicu V, Park PS (2016) Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 473:3819–3836. https://doi.org/10.1042/BCJ20160422

    Article  CAS  PubMed  Google Scholar 

  91. Modzelewska A, Filipek S, Palczewski K, Park PS (2006) Arrestin interaction with rhodopsin: conceptual models. Cell Biochem Biophys 46:1–15

    Article  CAS  PubMed  Google Scholar 

  92. Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    CAS  PubMed  Google Scholar 

  93. Nair KS, Balasubramanian N, Slepak VZ (2002) Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors. Curr Biol 12:421–425. https://doi.org/10.1016/s0960-9822(02)00691-7

    Article  CAS  PubMed  Google Scholar 

  94. Najafi M, Haeri M, Knox BE, Schiesser WE, Calvert PD (2012) Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors. J Gen Physiol 140:249–266. https://doi.org/10.1085/jgp.201210818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Neri M, Vanni S, Tavernelli I, Rothlisberger U (2010) Role of aggregation in rhodopsin signal transduction. Biochemistry 49:4827–4832. https://doi.org/10.1021/bi100478j

    Article  CAS  PubMed  Google Scholar 

  96. Nickell S, Park PS, Baumeister W, Palczewski K (2007) Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J Cell Biol 177:917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Niu SL, Mitchell DC, Lim SY, Wen ZM, Kim HY, Salem N Jr, Litman BJ (2004) Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J Biol Chem 279:31098–31104. https://doi.org/10.1074/jbc.M404376200

    Article  CAS  PubMed  Google Scholar 

  98. Niu SL, Mitchell DC, Litman BJ (2002) Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: effects on receptor activation. J Biol Chem 277:20139–20145. https://doi.org/10.1074/jbc.M200594200

    Article  CAS  PubMed  Google Scholar 

  99. Olive J, Recouvreur M (1977) Differentiation of retinal rod disc membranes in mice. Exp Eye Res 25:63–74

    Article  CAS  PubMed  Google Scholar 

  100. Osborne HB, Sardet C, Helenius A (1974) Bovine rhodopsin: characterization of the complex formed with Triton X-100. Eur J Biochem 44:383–390

    Article  CAS  PubMed  Google Scholar 

  101. Osborne HB, Sardet C, Michel-Villaz M, Chabre M (1978) Structural study of rhodopsin in detergent micelles by small-angle neutron scattering. J Mol Biol 123:177–206. https://doi.org/10.1016/0022-2836(78)90320-0

    Article  CAS  PubMed  Google Scholar 

  102. Ovchinnikov Yu A (1982) Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett 148:179–191

    Article  PubMed  Google Scholar 

  103. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le T, I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739-745

  104. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187. https://doi.org/10.1038/nature07063

    Article  CAS  PubMed  Google Scholar 

  105. Park PS (2014) Constitutively active rhodopsin and retinal disease. Adv Pharmacol 70:1–36. https://doi.org/10.1016/B978-0-12-417197-8.00001-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Park PS (2019) Rhodopsin oligomerization and aggregation. J Membr Biol 252:413–423. https://doi.org/10.1007/s00232-019-00078-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Perdomo D, Bubis J (2020) Light or tyrosine phosphorylation recruits retinal rod outer segment proteins to lipid rafts. Biochimie 177:1–12. https://doi.org/10.1016/j.biochi.2020.07.016

    Article  CAS  PubMed  Google Scholar 

  108. Periole X, Huber T, Marrink SJ, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132. https://doi.org/10.1021/ja0706246

    Article  CAS  PubMed  Google Scholar 

  109. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 134:10959–10965. https://doi.org/10.1021/ja303286e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597-1598. https://doi.org/10.1194/jlr.E600002-JLR200

  111. Ploier B, Caro LN, Morizumi T, Pandey K, Pearring JN, Goren MA, Finnemann SC, Graumann J, Arshavsky VY, Dittman JS, Ernst OP, Menon AK (2016) Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants. Nat Commun 7:12832. https://doi.org/10.1038/ncomms12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Polozova A, Litman BJ (2000) Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys J 79:2632-2643. https://doi.org/10.1016/S0006-3495(00)76502-7

  113. Poo M, Cone RA (1974) Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247:438–441

    Article  CAS  PubMed  Google Scholar 

  114. Rakshit T, Park PS (2015) Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes. Biochemistry 54:2885–2894. https://doi.org/10.1021/acs.biochem.5b00003

    Article  CAS  PubMed  Google Scholar 

  115. Rakshit T, Senapati S, Parmar VM, Sahu B, Maeda A, Park PS (2017) Adaptations in rod outer segment disc membranes in response to environmental lighting conditions. Biochim Biophys Acta 1864:1691–1702. https://doi.org/10.1016/j.bbamcr.2017.06.013

    Article  CAS  PubMed Central  Google Scholar 

  116. Rakshit T, Senapati S, Sinha S, Whited AM, Park PS-H (2015) Rhodopsin forms nanodomains in rod outer segment disc membranes of the cold-blooded Xenopus laevis. PLoS One 10:e0141114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Ramirez SA, Leidy C (2018) Effect of the organization of rhodopsin on the association between transducin and a photoactivated receptor. J Phys Chem B 122:8872-8879. https://doi.org/10.1021/acs.jpcb.8b07401

  118. Roof DJ, Heuser JE (1982) Surfaces of rod photoreceptor disk membranes: integral membrane components. J Cell Biol 95:487–500

    Article  CAS  PubMed  Google Scholar 

  119. Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) Electron crystallography reveals the structure of metarhodopsin I. EMBO J 23:3609–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Saibil H, Chabre M, Worcester D (1976) Neutron diffraction studies of retinal rod outer segment membranes. Nature 262:266–270

    Article  CAS  PubMed  Google Scholar 

  121. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A 103:16123–16128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sapra KT, Park PS, Filipek S, Engel A, Muller DJ, Palczewski K (2006) Detecting molecular interactions that stabilize native bovine rhodopsin. J Mol Biol 358:255–269

    Article  CAS  Google Scholar 

  123. Saxton MJ, Owicki JC (1989) Concentration effects on reactions in membranes: rhodopsin and transducin. Biochim Biophys Acta 979:27–34

    Article  CAS  PubMed  Google Scholar 

  124. Schertler GF, Hargrave PA (1995) Projection structure of frog rhodopsin in two crystal forms. Proc Natl Acad Sci U S A 92:11578–11582. https://doi.org/10.1073/pnas.92.25.11578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schoneberg J, Heck M, Hofmann KP, Noe F (2014) Explicit spatiotemporal simulation of receptor-g protein coupling in rod cell disk membranes. Biophys J 107:1042-1053. https://doi.org/10.1016/j.bpj.2014.05.050

  126. Sechrest ER, Murphy J, Senapati S, Goldberg AFX, Park PS, Kolandaivelu S (2020) Loss of PRCD alters number and packaging density of rhodopsin in rod photoreceptor disc membranes. Sci Rep 10:17885. https://doi.org/10.1038/s41598-020-74628-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Senapati S, Gragg M, Samuels IS, Parmar VM, Maeda A, Park PS (2018) Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes. Biochim Biophys Acta 1860:1403–1413. https://doi.org/10.1016/j.bbamem.2018.03.030

    Article  CAS  PubMed Central  Google Scholar 

  128. Senapati S, Park PS (1862) Differential adaptations in rod outer segment disc membranes in different models of congenital stationary night blindness. Biochim Biophys Acta Biomembr 2020:183396. https://doi.org/10.1016/j.bbamem.2020.183396

    Article  CAS  Google Scholar 

  129. Senapati S, Poma AB, Cieplak M, Filipek S, Park PSH (2019) Differentiating between inactive and active states of rhodopsin by atomic force microscopy in native membranes. Anal Chem 91:7226–7235. https://doi.org/10.1021/acs.analchem.9b00546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Senin II, Hoppner-Heitmann D, Polkovnikova OO, Churumova VA, Tikhomirova NK, Philippov PP, Koch KW (2004) Recoverin and rhodopsin kinase activity in detergent-resistant membrane rafts from rod outer segments. J Biol Chem 279:48647–48653. https://doi.org/10.1074/jbc.M402516200

    Article  CAS  PubMed  Google Scholar 

  131. Seno K, Hayashi F (2017) Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin. J Biol Chem 292:15321–15328. https://doi.org/10.1074/jbc.M117.804880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Seno K, Kishimoto M, Abe M, Higuchi Y, Mieda M, Owada Y, Yoshiyama W, Liu H, Hayashi F (2001) Light- and guanosine 5′-3-O-(thio)triphosphate-sensitive localization of a G protein and its effector on detergent-resistant membrane rafts in rod photoreceptor outer segments. J Biol Chem 276:20813–20816. https://doi.org/10.1074/jbc.C100032200

    Article  CAS  PubMed  Google Scholar 

  133. Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18:361–374. https://doi.org/10.1038/nrm.2017.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shaw A, Crain R, Marinetti GV, O’Brien D, Tyminski PN (1980) Light-enhanced cross-linking of rhodopsin in rod outer segment membranes as detected by chemical probes. Biochim Biophys Acta 603:313–321

    Article  CAS  PubMed  Google Scholar 

  135. Shi GW, Chen J, Concepcion F, Motamedchaboki K, Marjoram P, Langen R (2005) Light causes phosphorylation of non-activated visual pigments in intact mouse rod photoreceptor cells. J Biol Chem 280:41184–41191. https://doi.org/10.1074/jbc.M506935200

    Article  CAS  PubMed  Google Scholar 

  136. Shukolyukov SA (2009) Aggregation of frog rhodopsin to oligomers and their dissociation to monomer: application of BN- and SDS-PAGE. Biochemistry (Mosc) 74:599–604

    Article  CAS  Google Scholar 

  137. Sommer ME, Hofmann KP, Heck M (2011) Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem 286:7359-7369. https://doi.org/10.1074/jbc.M110.204941

  138. Sommer ME, Hofmann KP, Heck M (2012) Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nat Commun 3:995. https://doi.org/10.1038/ncomms2000

    Article  CAS  PubMed  Google Scholar 

  139. Soubias O, Niu SL, Mitchell DC, Gawrisch K (2008) Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content. J Am Chem Soc 130:12465–12471. https://doi.org/10.1021/ja803599x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Soubias O, Teague WE, Gawrisch K (2006) Evidence for specificity in lipid-rhodopsin interactions. J Biol Chem 281:33233–33241. https://doi.org/10.1074/jbc.M603059200

    Article  CAS  PubMed  Google Scholar 

  141. Soubias O, Teague WE Jr, Hines KG, Gawrisch K (2015) Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function. Biophys J 108:1125–1132. https://doi.org/10.1016/j.bpj.2015.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Suda K, Filipek S, Palczewski K, Engel A, Fotiadis D (2004) The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes. Mol Membr Biol 21:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tanimoto Y, Okada K, Hayashi F, Morigaki K (2015) Evaluating the raftophilicity of rhodopsin photoreceptor in a patterned model membrane. Biophys J 109:2307–2316. https://doi.org/10.1016/j.bpj.2015.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tsukamoto H, Sinha A, DeWitt M, Farrens DL (2010) Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J Mol Biol 399:501–511. https://doi.org/10.1016/j.jmb.2010.04.029

    Article  CAS  PubMed  Google Scholar 

  145. Wang Q, Zhang X, Zhang L, He F, Zhang G, Jamrich M, Wensel TG (2008) Activation-dependent hindrance of photoreceptor G protein diffusion by lipid microdomains. J Biol Chem 283:30015–30024. https://doi.org/10.1074/jbc.M803953200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang Y, Botelho AV, Martinez GV, Brown MF (2002) Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. J Am Chem Soc 124:7690–7701

    Article  CAS  PubMed  Google Scholar 

  147. Wessling-Resnick M, Johnson GL (1987) Transducin interactions with rhodopsin. Evidence for positive cooperative behavior. J Biol Chem 262:12444–12447

    Article  CAS  PubMed  Google Scholar 

  148. Wey CL, Cone RA, Edidin MA (1981) Lateral diffusion of rhodopsin in photoreceptor cells measured by fluorescence photobleaching and recovery. Biophys J 33:225–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Whited AM, Park PSH (2015) Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. Biochim Biophys Acta 1848:26–34. https://doi.org/10.1016/j.bbamem.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  150. Whorton MR, Jastrzebska B, Park PS, Fotiadis D, Engel A, Palczewski K, Sunahara RK (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387-4394. https://doi.org/10.1074/jbc.M703346200

  151. Willardson BM, Pou B, Yoshida T, Bitensky MW (1993) Cooperative binding of the retinal rod G-protein, transducin, to light-activated rhodopsin. J Biol Chem 268:6371–6382

    Article  CAS  PubMed  Google Scholar 

  152. Williams TP, Penn JS (1985) Intracellular topography of rhodopsin regeneration in vertebrate rods. J Gen Physiol 86:413–422

    Article  CAS  PubMed  Google Scholar 

  153. Wyman J (1967) Allosteric linkage. J Am Chem Soc 89:2202–2218

    Article  CAS  Google Scholar 

  154. Yasuda S, Hara H, Tokunaga F, Arata T (2012) Spatial arrangement of rhodopsin in retinal rod outer segment membranes studied by spin-labeling and pulsed electron double resonance. Biochem Biophys Res Commun 425:134–137. https://doi.org/10.1016/j.bbrc.2012.07.040

    Article  CAS  PubMed  Google Scholar 

  155. Young JE, Albert AD (2000) Transducin binding in bovine rod outer segment disk membranes of different age/spatial location. Exp Eye Res 70:809–812. https://doi.org/10.1006/exer.2000.0821

    Article  CAS  PubMed  Google Scholar 

  156. Zhang T, Cao LH, Kumar S, Enemchukwu NO, Zhang N, Lambert A, Zhao X, Jones A, Wang S, Dennis EM, Fnu A, Ham S, Rainier J, Yau KW, Fu Y (2016) Dimerization of visual pigments in vivo. Proc Natl Acad Sci U S A 113:9093–9098. https://doi.org/10.1073/pnas.1609018113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao DY, Poge M, Morizumi T, Gulati S, Van Eps N, Zhang J, Miszta P, Filipek S, Mahamid J, Plitzko JM, Baumeister W, Ernst OP, Palczewski K (2019) Cryo-EM structure of the native rhodopsin dimer in nanodiscs. J Biol Chem 294:14215–14230. https://doi.org/10.1074/jbc.RA119.010089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhou XE, He Y, de Waal PW, Gao X, Kang Y, Van Eps N, Yin Y, Pal K, Goswami D, White TA, Barty A, Latorraca NR, Chapman HN, Hubbell WL, Dror RO, Stevens RC, Cherezov V, Gurevich VV, Griffin PR, Ernst OP, Melcher K, Xu HE (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170:457-469 e413. doi:https://doi.org/10.1016/j.cell.2017.07.002

Download references

Acknowledgements

I would like to thank Megan Gragg for generating the data shown in Fig. 7. This work was funded by a grant from the National Institutes of Health (R01EY021731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S.-H. Park.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Function and Dysfunction in Vertebrate Photoreceptor Cells in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, P.SH. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflugers Arch - Eur J Physiol 473, 1361–1376 (2021). https://doi.org/10.1007/s00424-021-02522-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02522-5

Keywords

Navigation