Skip to main content
Log in

Channelopathies of voltage-gated L-type Cav1.3/α1D and T-type Cav3.1/α1G Ca2+ channels in dysfunction of heart automaticity

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

A Correction to this article was published on 09 July 2020

This article has been updated

Abstract

The heart automaticity is a fundamental physiological function in vertebrates. The cardiac impulse is generated in the sinus node by a specialized population of spontaneously active myocytes known as “pacemaker cells.” Failure in generating or conducting spontaneous activity induces dysfunction in cardiac automaticity. Several families of ion channels are involved in the generation and regulation of the heart automaticity. Among those, voltage-gated L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels play important roles in the spontaneous activity of pacemaker cells. Ca2+ channel channelopathies specifically affecting cardiac automaticity are considered rare. Recent research on familial disease has identified mutations in the Cav1.3-encoding CACNA1D gene that underlie congenital sinus node dysfunction and deafness (OMIM # 614896). In addition, both Cav1.3 and Cav3.1 channels have been identified as pathophysiological targets of sinus node dysfunction and heart block, caused by congenital autoimmune disease of the cardiac conduction system. The discovery of channelopathies linked to Cav1.3 and Cav3.1 channels underscores the importance of Ca2+ channels in the generation and regulation of heart’s automaticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 09 July 2020

    The above article was published online with an error in Fig.��1b. There is a doubled action potential at the far right of the left panel of the figure.

References

  1. Jensen PN, Gronroos NN, Chen LY, Folsom AR, deFilippi C, Heckbert SR, Alonso A (2014) Incidence of and risk factors for sick sinus syndrome in the general population. J Am Coll Cardiol 64:531–538. https://doi.org/10.1016/j.jacc.2014.03.056

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, Lee R, Marine JE, McLeod CJ, Oken KR, Patton KK, Pellegrini CN, Selzman KA, Thompson A, Varosy PD (2018) 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. J Am Coll Cardiol 74:932–987. https://doi.org/10.1016/j.jacc.2018.10.043

    Article  PubMed  Google Scholar 

  3. Monfredi O, Boyett MR (2015) Sick sinus syndrome and atrial fibrillation in older persons-a view from the sinoatrial nodal myocyte. J Mol Cell Cardiol 83:88–100. https://doi.org/10.1016/j.yjmcc.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  4. Baruscotti M, Bottelli G, Milanesi R, DiFrancesco JC, DiFrancesco D (2010) HCN-related channelopathies. Pflugers Arch 460:405–415. https://doi.org/10.1007/s00424-010-0810-8

    Article  CAS  PubMed  Google Scholar 

  5. Kuss J, Stallmeyer B, Goldstein M, Rinne S, Pees C, Zumhagen S, Seebohm G, Decher N, Pott L, Kienitz MC, Schulze-Bahr E (2019) Familial sinus node disease caused by a gain of GIRK (G-protein activated inwardly rectifying K(+) channel) channel function. Circ Genom Precis Med 12:e002238. https://doi.org/10.1161/CIRCGEN.118.002238

    Article  CAS  PubMed  Google Scholar 

  6. Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G, Ali A, Ahmad I, Sinnegger-Brauns MJ, Brandt N, Engel J, Mangoni ME, Farooq M, Khan HU, Nurnberg P, Striessnig J, Bolz HJ (2011) Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 14:77–84

    Article  CAS  PubMed  Google Scholar 

  7. Hu K, Qu Y, Yue Y, Boutjdir M (2004) Functional basis of sinus bradycardia in congenital heart block. Circ Res 94:e32–e38

    Article  CAS  PubMed  Google Scholar 

  8. Mangoni ME, Couette B, Marger L, Bourinet E, Striessnig J, Nargeot J (2006) Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. Prog Biophys Mol Biol 90:38–63

    Article  CAS  PubMed  Google Scholar 

  9. Liaqat K, Schrauwen I, Raza SI, Lee K, Hussain S, Chakchouk I, Nasir A, Acharya A, Abbe I, Umair M, Ansar M, Ullah I, Shah K, Bamshad MJ, Nickerson DA, Ahmad W, Leal SM (2019) Identification of CACNA1D variants associated with sinoatrial node dysfunction and deafness in additional Pakistani families reveals a clinical significance. J Hum Genet 64:153–160. https://doi.org/10.1038/s10038-018-0542-8

    Article  CAS  PubMed  Google Scholar 

  10. Qu YS, Lazzerini PE, Capecchi PL, Laghi-Pasini F, El Sherif N, Boutjdir M (2019) Autoimmune calcium channelopathies and cardiac electrical abnormalities. Front Cardiovasc Med 6:54. https://doi.org/10.3389/fcvm.2019.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bleeker WK, Mackaay AJ, Masson-Pevet M, Bouman LN, Becker AE (1980) Functional and morphological organization of the rabbit sinus node. Circ Res 46:11–22

    Article  CAS  PubMed  Google Scholar 

  12. Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47:658–687

    Article  CAS  PubMed  Google Scholar 

  13. Verheijck EE, Wessels A, van Ginneken AC, Bourier J, Markman MW, Vermeulen JL, de Bakker JM, Lamers WH, Opthof T, Bouman LN (1998) Distribution of atrial and nodal cells within the rabbit sinoatrial node: models of sinoatrial transition. Circulation 97:1623–1631

    Article  CAS  PubMed  Google Scholar 

  14. De Maziere AM, van Ginneken AC, Wilders R, Jongsma HJ, Bouman LN (1992) Spatial and functional relationship between myocytes and fibroblasts in the rabbit sinoatrial node. J Mol Cell Cardiol 24:567–578

    Article  PubMed  Google Scholar 

  15. Linscheid N, Logantha S, Poulsen PC, Zhang S, Schrolkamp M, Egerod KL, Thompson JJ, Kitmitto A, Galli G, Humphries MJ, Zhang H, Pers TH, Olsen JV, Boyett M, Lundby A (2019) Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat Commun 10:2889. https://doi.org/10.1038/s41467-019-10709-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. ten Velde I, de Jonge B, Verheijck EE, van Kempen MJ, Analbers L, Gros D, Jongsma HJ (1995) Spatial distribution of connexin43, the major cardiac gap junction protein, visualizes the cellular network for impulse propagation from sinoatrial node to atrium. Circ Res 76:802–811

    Article  PubMed  Google Scholar 

  17. Boyett MR, Inada S, Yoo S, Li J, Liu J, Tellez J, Greener ID, Honjo H, Billeter R, Lei M, Zhang H, Efimov IR, Dobrzynski H (2006) Connexins in the sinoatrial and atrioventricular nodes. Adv Cardiol 42:175–197

    Article  CAS  PubMed  Google Scholar 

  18. Verheijck EE, van Kempen MJ, Veereschild M, Lurvink J, Jongsma HJ, Bouman LN (2001) Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res 52:40–50

    Article  CAS  PubMed  Google Scholar 

  19. Christel CJ, Cardona N, Mesirca P, Herrmann S, Hofmann F, Striessnig J, Ludwig A, Mangoni ME, Lee A (2012) Distinct localization and modulation of Cav1.2 and Cav1.3 L-type Ca2+ channels in mouse sinoatrial node. J Physiol 590:6327–6342. https://doi.org/10.1113/jphysiol.2012.239954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Toyoda F, Mesirca P, Dubel S, Ding WG, Striessnig J, Mangoni ME, Matsuura H (2017) CaV1.3 L-type Ca2+ channel contributes to the heartbeat by generating a dihydropyridine-sensitive persistent Na+ current. Sci Rep 7:7869. doi:https://doi.org/10.1038/s41598-017-08191-8

  21. Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106:659–673. https://doi.org/10.1161/CIRCRESAHA.109.206078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982

    Article  CAS  PubMed  Google Scholar 

  23. Mesirca P, Marger L, Toyoda F, Rizzetto R, Audoubert M, Dubel S, Torrente AG, Difrancesco ML, Muller JC, Leoni AL, Couette B, Nargeot J, Clapham DE, Wickman K, Mangoni ME (2013) The G-protein-gated K+ channel, IKACh, is required for regulation of pacemaker activity and recovery of resting heart rate after sympathetic stimulation. J Gen Physiol 142:113–126. https://doi.org/10.1085/jgp.201310996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114

    Article  CAS  PubMed  Google Scholar 

  25. DiFrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res 106:434–446. https://doi.org/10.1161/CIRCRESAHA.109.208041

    Article  CAS  PubMed  Google Scholar 

  26. DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351:145–147

    Article  CAS  PubMed  Google Scholar 

  27. DiFrancesco D, Mangoni M (1994) Modulation of single hyperpolarization-activated channels (i(f)) by cAMP in the rabbit sino-atrial node. J Physiol 474:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, Robinson RB, Dixon JE, McKinnon D, Cohen IS (1999) Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 85:e1–e6

    Article  CAS  PubMed  Google Scholar 

  29. Monfredi O, Maltsev VA, Lakatta EG (2013) Modern concepts concerning the origin of the heartbeat. Physiology (Bethesda) 28:74–92. https://doi.org/10.1152/physiol.00054.2012

    Article  CAS  Google Scholar 

  30. Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Torrente AG, Mesirca P, Neco P, Rizzetto R, Dubel S, Barrere C, Sinegger-Brauns M, Striessnig J, Richard S, Nargeot J, Gomez AM, Mangoni ME (2016) L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity. Cardiovasc Res 109:451–461. https://doi.org/10.1093/cvr/cvw006

    Article  CAS  PubMed  Google Scholar 

  32. Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 98:1422–1430

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Zhang X, Zhang C, Zhang X, Li Y, Qi Z, Szeto C, Tang M, Peng Y, Molkentin JD, Houser SR, Xie M, Chen X (2018) Increasing T-type calcium channel activity by beta-adrenergic stimulation contributes to beta-adrenergic regulation of heart rates. J Physiol 596:1137–1151. https://doi.org/10.1113/JP274756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N (2002) Functional roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res 90:981–987

    Article  CAS  PubMed  Google Scholar 

  35. Mesirca P, Torrente AG, Mangoni ME (2015) Functional role of voltage gated Ca(2+) channels in heart automaticity. Front Physiol 6:19. https://doi.org/10.3389/fphys.2015.00019

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baruscotti M, DiFrancesco D, Robinson RB (1996) A TTX-sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells. J Physiol 492(Pt 1):21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lei M, Jones SA, Liu J, Lancaster MK, Fung SS, Dobrzynski H, Camelliti P, Maier SK, Noble D, Boyett MR (2004) Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol 559:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li N, Kalyanasundaram A, Hansen BJ, Artiga EJ, Sharma R, Abudulwahed SH, Helfrich KM, Rozenberg G, Wu PJ, Zakharkin S, Gyorke S, Janssen PM, Whitson BA, Mokadam NA, Biesiadecki BJ, Accornero F, Hummel JD, Mohler PJ, Dobrzynski H, Zhao J, Fedorov VV (2020) Impaired neuronal sodium channels cause intranodal conduction failure and reentrant arrhythmias in human sinoatrial node. Nat Commun 11:512. https://doi.org/10.1038/s41467-019-14039-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA, Scheuer T (2003) An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci U S A 100:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lei M, Goddard C, Liu J, Leoni AL, Royer A, Fung SS, Xiao G, Ma A, Zhang H, Charpentier F, Vandenberg JI, Colledge WH, Grace AA, Huang CL (2005) Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J Physiol 567:387–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca(2+)-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538

    Article  CAS  PubMed  Google Scholar 

  42. Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL, Graham RM, Cannell MB, Allen DG (2007) Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ Res 100:1605–1614

    Article  CAS  PubMed  Google Scholar 

  43. Sah R, Mesirca P, Van den Boogert M, Rosen J, Mably J, Mangoni ME, Clapham DE (2013) Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci U S A 110:E3037–E3046. https://doi.org/10.1073/pnas.1311865110

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME, Clapham DE (2013) Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation 128:101–114. https://doi.org/10.1161/CIRCULATIONAHA.112.000768

    Article  CAS  PubMed  Google Scholar 

  45. Gueguinou M, Chantome A, Fromont G, Bougnoux P, Vandier C, Potier-Cartereau M (2014) KCa and Ca(2+) channels: the complex thought. Biochim Biophys Acta 1843:2322–2333. https://doi.org/10.1016/j.bbamcr.2014.02.019

    Article  CAS  PubMed  Google Scholar 

  46. Lai MH, Wu Y, Gao Z, Anderson ME, Dalziel JE, Meredith AL (2014) BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. Am J Physiol Heart Circ Physiol 307:H1327–H1338. https://doi.org/10.1152/ajpheart.00354.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haron-Khun S, Weisbrod D, Bueno H, Yadin D, Behar J, Peretz A, Binah O, Hochhauser E, Eldar M, Yaniv Y, Arad M, Attali B (2017) SK4 K(+) channels are therapeutic targets for the treatment of cardiac arrhythmias. EMBO Mol Med 9:415–429. https://doi.org/10.15252/emmm.201606937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen WT, Chen YC, Lu YY, Kao YH, Huang JH, Lin YK, Chen SA, Chen YJ (2013) Apamin modulates electrophysiological characteristics of the pulmonary vein and the sinoatrial node. Eur J Clin Investig 43:957–963. https://doi.org/10.1111/eci.12125

    Article  CAS  Google Scholar 

  49. Torrente AG, Zhang R, Wang H, Zaini A, Kim B, Yue X, Philipson KD, Goldhaber JI (2017) Contribution of small conductance K+ channels to sinoatrial node pacemaker activity: insights from atrial-specific Na+ /Ca2+ exchange knockout mice. J Physiol 595:3847–3865. https://doi.org/10.1113/JP274249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Torrente AG, Zhang R, Wang H, Zaini A, Kim B, Yue X, Philipson KD, Goldhaber JI (2017) Contribution of small conductance K(+) channels to sinoatrial node pacemaker activity: insights from atrial-specific Na(+)/Ca(2+) exchange knockout mice. J Physiol 595:3847–3865. https://doi.org/10.1113/JP274249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Q, Timofeyev V, Lu L, Li N, Singapuri A, Long MK, Bond CT, Adelman JP, Chiamvimonvat N (2008) Functional roles of a Ca2+-activated K+ channel in atrioventricular nodes. Circ Res 102:465–471. https://doi.org/10.1161/CIRCRESAHA.107.161778

    Article  CAS  PubMed  Google Scholar 

  52. Zhang XD, Coulibaly ZA, Chen WC, Ledford HA, Lee JH, Sirish P, Dai G, Jian Z, Chuang F, Brust-Mascher I, Yamoah EN, Chen-Izu Y, Izu LT, Chiamvimonvat N (2018) Coupling of SK channels, L-type Ca(2+) channels, and ryanodine receptors in cardiomyocytes. Sci Rep 8:4670. https://doi.org/10.1038/s41598-018-22843-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189. https://doi.org/10.1038/ng0297-186

    Article  CAS  PubMed  Google Scholar 

  54. Drici MD, Arrighi I, Chouabe C, Mann JR, Lazdunski M, Romey G, Barhanin J (1998) Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ Res 83:95–102. https://doi.org/10.1161/01.res.83.1.95

    Article  CAS  PubMed  Google Scholar 

  55. Hoda JC, Zaghetto F, Koschak A, Striessnig J (2005) Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels. J Neurosci 25:252–259. https://doi.org/10.1523/JNEUROSCI.3054-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    Article  CAS  PubMed  Google Scholar 

  57. Calorio C, Gavello D, Guarina L, Salio C, Sassoe-Pognetto M, Riganti C, Bianchi FT, Hofer NT, Tuluc P, Obermair GJ, Defilippi P, Balzac F, Turco E, Bett GC, Rasmusson RL, Carbone E (2019) Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers. J Physiol 597:1705–1733. https://doi.org/10.1113/JP277487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mesirca P, Bidaud I, Briec F, Evain S, Torrente AG, Le Quang K, Leoni AL, Baudot M, Marger L, Chung You Chong A, Nargeot J, Striessnig J, Wickman K, Charpentier F, Mangoni ME (2016) G protein-gated IKACh channels as therapeutic targets for treatment of sick sinus syndrome and heart block. Proc Natl Acad Sci U S A 113:E932–E941, 10. 1073/pnas.1517181113

  59. Mancarella S, Yue Y, Karnabi E, Qu Y, El-Sherif N, Boutjdir M (2008) Impaired Ca2+ homeostasis is associated with atrial fibrillation in the alpha1D L-type Ca2+ channel KO mouse. Am J Physiol Heart Circ Physiol 295:H2017–H2024. https://doi.org/10.1152/ajpheart.00537.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639. https://doi.org/10.1038/nature01335

    Article  CAS  PubMed  Google Scholar 

  61. Hund TJ, Mohler PJ (2008) Ankyrin-based targeting pathway regulates human sinoatrial node automaticity. Channels (Austin) 2:404–406

    Article  Google Scholar 

  62. Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR, Koval O, Marionneau C, Chen B, Wu Y, Demolombe S, Song LS, Le Marec H, Probst V, Schott JJ, Anderson ME, Mohler PJ (2008) Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci U S A 105:15617–15622. https://doi.org/10.1073/pnas.0805500105

    Article  PubMed  PubMed Central  Google Scholar 

  63. Boutjdir M (2000) Molecular and ionic basis of congenital complete heart block. Trends Cardiovasc Med 10:114–122

    Article  CAS  PubMed  Google Scholar 

  64. Karnabi E, Boutjdir M (2010) Role of calcium channels in congenital heart block. Scand J Immunol 72:226–234. https://doi.org/10.1111/j.1365-3083.2010.02439.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buyon JP, Hiebert R, Copel J, Craft J, Friedman D, Katholi M, Lee LA, Provost TT, Reichlin M, Rider L, Rupel A, Saleeb S, Weston WL, Skovron ML (1998) Autoimmune-associated congenital heart block: demographics, mortality, morbidity and recurrence rates obtained from a national neonatal lupus registry. J Am Coll Cardiol 31:1658–1666. https://doi.org/10.1016/s0735-1097(98)00161-2

    Article  CAS  PubMed  Google Scholar 

  66. Crittenden IH, Latta H, Ticinovich DA (1964) Familial congenital heart block. Am J Dis Child 108:104–108. https://doi.org/10.1001/archpedi.1964.02090010106015

    Article  CAS  PubMed  Google Scholar 

  67. Brucato A, Cimaz R, Balla E (2000) Prevention of recurrences of corticosteroid-dependent idiopathic pericarditis by colchicine in an adolescent patient. Pediatr Cardiol 21:395–396. https://doi.org/10.1007/s002460010091

    Article  CAS  PubMed  Google Scholar 

  68. Boutjdir M, Chen L, Zhang ZH, Tseng CE, DiDonato F, Rashbaum W, Morris A, el-Sherif N, Buyon JP (1997) Arrhythmogenicity of IgG and anti-52-kD SSA/Ro affinity-purified antibodies from mothers of children with congenital heart block. Circ Res 80:354–362. doi:https://doi.org/10.1161/01.res.80.3.354

  69. Qu Y, Xiao GQ, Chen L, Boutjdir M (2001) Autoantibodies from mothers of children with congenital heart block downregulate cardiac L-type Ca channels. J Mol Cell Cardiol 33:1153–1163

    Article  CAS  PubMed  Google Scholar 

  70. Restivo M, Kozhevnikov DO, Boutjdir M (2001) Optical mapping of activation patterns in an animal model of congenital heart block. Am J Physiol Heart Circ Physiol 280:H1889–H1895. https://doi.org/10.1152/ajpheart.2001.280.4.H1889

    Article  CAS  PubMed  Google Scholar 

  71. Qu Y, Baroudi G, Yue Y, Boutjdir M (2005) Novel molecular mechanism involving alpha1D (Cav1.3) L-type calcium channel in autoimmune-associated sinus bradycardia. Circulation 111:3034–3041

    Article  CAS  PubMed  Google Scholar 

  72. Karnabi E, Qu Y, Wadgaonkar R, Mancarella S, Yue Y, Chahine M, Clancy RM, Buyon JP, Boutjdir M (2010) Congenital heart block: identification of autoantibody binding site on the extracellular loop (domain I, S5-S6) of alpha(1D) L-type Ca channel. J Autoimmun 34:80–86. https://doi.org/10.1016/j.jaut.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  73. Strandberg LS, Cui X, Rath A, Liu J, Silverman ED, Liu X, Siragam V, Ackerley C, Su BB, Yan JY, Capecchi M, Biavati L, Accorroni A, Yuen W, Quattrone F, Lung K, Jaeggi ET, Backx PH, Deber CM, Hamilton RM (2013) Congenital heart block maternal sera autoantibodies target an extracellular epitope on the alpha1G T-type calcium channel in human fetal hearts. PLoS One 8:e72668. https://doi.org/10.1371/journal.pone.0072668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karnabi E, Qu Y, Mancarella S, Boutjdir M (2011) Rescue and worsening of congenital heart block-associated electrocardiographic abnormalities in two transgenic mice. J Cardiovasc Electrophysiol 22:922–930. https://doi.org/10.1111/j.1540-8167.2011.02032.x

    Article  PubMed  PubMed Central  Google Scholar 

  75. Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin HS, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME (2011) Functional roles of Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of mouse atrioventricular cells: insights into the atrioventricular pacemaker mechanism. Channels (Austin) 5:251–261

    Article  CAS  Google Scholar 

  76. Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, Renstrom E, Wietzorrek G, Berjukov S, Cavalli M, Walter D, Koschak A, Waldschutz R, Hering S, Bova S, Rorsman P, Pongs O, Singewald N, Striessnig JJ (2004) Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels. J Clin Invest 113:1430–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Le Quang K, Benito B, Naud P, Qi XY, Shi YF, Tardif JC, Gillis MA, Dobrev D, Charpentier F, Nattel S (2013) T-type calcium current contributes to escape automaticity and governs the occurrence of lethal arrhythmias after atrioventricular block in mice. Circ Arrhythm Electrophysiol 6:799–808. https://doi.org/10.1161/CIRCEP.113.000407

    Article  CAS  PubMed  Google Scholar 

  78. Pinggera A, Lieb A, Benedetti B, Lampert M, Monteleone S, Liedl KR, Tuluc P, Striessnig J (2015) CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels. Biol Psychiatry 77:816–822. https://doi.org/10.1016/j.biopsych.2014.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pinggera A, Mackenroth L, Rump A, Schallner J, Beleggia F, Wollnik B, Striessnig J (2017) New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum Mol Genet 26:2923–2932. https://doi.org/10.1093/hmg/ddx175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, Ryska A, Chin LK, Kamaruddin NA, Mohd Mokhtar N, AR AJ, Sukor N, Solar M, Striessnig J, Brown MJ, Azizan EA (2017) Aldosterone-producing adenomas: histopathology-genotype correlation and identification of a novel CACNA1D mutation. Hypertension 70:129–136. doi:https://doi.org/10.1161/HYPERTENSIONAHA.117.09057

  81. Chemin J, Siquier-Pernet K, Nicouleau M, Barcia G, Ahmad A, Medina-Cano D, Hanein S, Altin N, Hubert L, Bole-Feysot C, Fourage C, Nitschke P, Thevenon J, Rio M, Blanc P, Vidal C, Bahi-Buisson N, Desguerre I, Munnich A, Lyonnet S, Boddaert N, Fassi E, Shinawi M, Zimmerman H, Amiel J, Faivre L, Colleaux L, Lory P, Cantagrel V (2018) De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. Brain 141:1998–2013. https://doi.org/10.1093/brain/awy145

    Article  PubMed  Google Scholar 

  82. Scholl UI, Stolting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC, Quack I, Rump LC, Thiel A, Lande M, Frazier BG, Rasoulpour M, Bowlin DL, Sethna CB, Trachtman H, Fahlke C, Lifton RP (2015) Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 4:e06315. https://doi.org/10.7554/eLife.06315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    Article  CAS  PubMed  Google Scholar 

  84. Mangoni ME, Nargeot J (2001) Properties of the hyperpolarization-activated current (I(f)) in isolated mouse sino-atrial cells. Cardiovasc Res 52:51–64

    Article  CAS  PubMed  Google Scholar 

  85. Mangoni ME, Striessnig J, Platzer J, Nargeot J (2001) Pacemaker currents in mouse pacemaker cells. Circulation 104:R1047

    Google Scholar 

Download references

Funding

The group is a member of the Laboratory of Excellence “Ion Channel Science and Therapeutics” supported by a grant from ANR (ANR-11-LABX-0015). This research was supported by the Fondation pour la Recherche Medicale “Physiopathologie Cardiovasculaire” (DPC20171138970, M.E.M.) and by the Agence Nationale de la Recherche (ANR-15-CE14-0004-01, M.E.M.). We also thank the Fondation Leducq (TNE 19CVD03; to Matteo E. Mangoni and Peter J. Mohler) for supporting the “Fighting Against Sinus Node Dysfunction and Associated Arrhythmias” (FANTASY) network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo E. Mangoni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The above article was published online with an error in Figure 1b. There is a doubled action potential at the far right of the left panel of the figure.

This article is part of the special issue on Channelopathies: from mutation to diseases in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrente, A.G., Mesirca, P., Bidaud, I. et al. Channelopathies of voltage-gated L-type Cav1.3/α1D and T-type Cav3.1/α1G Ca2+ channels in dysfunction of heart automaticity. Pflugers Arch - Eur J Physiol 472, 817–830 (2020). https://doi.org/10.1007/s00424-020-02421-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02421-1

Keywords

Navigation