Skip to main content

Advertisement

Log in

Glucose transport in lymphocytes

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Glucose uptake into lymphocytes is accomplished by non-concentrative glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4, GLUT6) and/or by the Na+-coupled glucose carrier SGLT1. The latter accumulates glucose against glucose gradients and is still effective at very low extracellular glucose concentrations. Signaling involved in SGLT1 expression and activity includes protein kinase A (PKA), protein kinase C (PKC), serum- and glucocorticoid-inducible kinase (SGK1), AMP-activated kinase (AMPK), and Janus kinases (JAK2 and JAK3). Glucose taken up is partially stored as glycogen. In hypoxic environments, such as in tumors as well as infected and inflamed tissues, lymphocytes depend on energy production from glycogen-dependent glycolysis. The lack of SGLT1 may compromise glycogen storage and thus lymphocyte survival and function in hypoxic tissues. Accordingly, in mice, genetic knockout of sglt1 compromised bacterial clearance following Listeria monocytogenes infection leading to an invariably lethal course of the disease. Whether the effect was due to the lack of sglt1 in lymphocytes or in other cell types still remains to be determined. Clearly, additional experimental effort is required to define the role of glucose transport by GLUTs and particularly by SGLT1 for lymphocyte survival and function, as well as orchestration of the host defense against tumors and bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amabebe E, Anumba DOC (2018) The vaginal microenvironment: the physiologic role of lactobacilli. Front Med (Lausanne) 5:181. https://doi.org/10.3389/fmed.2018.00181

    Article  Google Scholar 

  2. Ananthakrishnan R, Hallam K, Li Q, Ramasamy R (2005) JAK-STAT pathway in cardiac ischemic stress. Vasc Pharmacol 43:353–356. https://doi.org/10.1016/j.vph.2005.08.020

    Article  CAS  Google Scholar 

  3. Arakaki RF (2016) Sodium-glucose cotransporter-2 inhibitors and genital and urinary tract infections in type 2 diabetes. Postgrad Med 128:409–417. https://doi.org/10.1080/00325481.2016.1167570

    Article  PubMed  Google Scholar 

  4. Baker EH, Wood DM, Brennan AL, Clark N, Baines DL, Philips BJ (2006) Hyperglycaemia and pulmonary infection. Proc Nutr Soc 65:227–235. https://doi.org/10.1079/pns2006499

    Article  CAS  PubMed  Google Scholar 

  5. Baker EH, Clark N, Brennan AL, Fisher DA, Gyi KM, Hodson ME, Philips BJ, Baines DL, Wood DM (2007) Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J Appl Physiol (1985) 102:1969–1975. https://doi.org/10.1152/japplphysiol.01425.2006

    Article  CAS  Google Scholar 

  6. Balmer ML, Ma EH, Bantug GR, Grahlert J, Pfister S, Glatter T, Jauch A, Dimeloe S, Slack E, Dehio P, Krzyzaniak MA, King CG, Burgener AV, Fischer M, Develioglu L, Belle R, Recher M, Bonilla WV, Macpherson AJ, Hapfelmeier S, Jones RG, Hess C (2016) Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44:1312–1324. https://doi.org/10.1016/j.immuni.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  7. Bauer DE, Harris MH, Plas DR, Lum JJ, Hammerman PS, Rathmell JC, Riley JL, Thompson CB (2004) Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18:1303–1305. https://doi.org/10.1096/fj.03-1001fje

    Article  CAS  PubMed  Google Scholar 

  8. Bhavsar SK, Singh Y, Sharma P, Khairnar V, Hosseinzadeh Z, Zhang S, Palmada M, Sabolic I, Koepsell H, Lang KS, Lang PA, Lang F (2016) Expression of JAK3 sensitive Na+ coupled glucose carrier SGLT1 in activated cytotoxic T lymphocytes. Cell Physiol Biochem 39:1209–1228. https://doi.org/10.1159/000447827

    Article  CAS  PubMed  Google Scholar 

  9. Bodd M, Tollefsen S, Bergseng E, Lundin KE, Sollid LM (2012) Evidence that HLA-DQ9 confers risk to celiac disease by presence of DQ9-restricted gluten-specific T cells. Hum Immunol 73:376–381. https://doi.org/10.1016/j.humimm.2012.01.016

    Article  CAS  PubMed  Google Scholar 

  10. Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Invest 70:550–557. https://doi.org/10.1172/jci110647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG, Sitkovsky MV (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167:6140–6149. https://doi.org/10.4049/jimmunol.167.11.6140

    Article  CAS  PubMed  Google Scholar 

  12. Casneuf VF, Fonteyne P, Van Damme N, Demetter P, Pauwels P, de Hemptinne B, De Vos M, Van de Wiele C, Peeters M (2008) Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Investig 26:852–859. https://doi.org/10.1080/07357900801956363

    Article  CAS  Google Scholar 

  13. Chakrabarti R, Jung CY, Lee TP, Liu H, Mookerjee BK (1994) Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol 152:2660–2668

    CAS  PubMed  Google Scholar 

  14. Cham CM, Gajewski TF (2005) Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. J Immunol 174:4670–4677. https://doi.org/10.4049/jimmunol.174.8.4670

    Article  CAS  PubMed  Google Scholar 

  15. Cham CM, Driessens G, O’Keefe JP, Gajewski TF (2008) Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 38:2438–2450. https://doi.org/10.1002/eji.200838289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Charni S, de Bettignies G, Rathore MG, Aguilo JI, van den Elsen PJ, Haouzi D, Hipskind RA, Enriquez JA, Sanchez-Beato M, Pardo J, Anel A, Villalba M (2010) Oxidative phosphorylation induces de novo expression of the MHC class I in tumor cells through the ERK5 pathway. J Immunol 185:3498–3503

    Article  CAS  PubMed  Google Scholar 

  17. Dieter M, Palmada M, Rajamanickam J, Aydin A, Busjahn A, Boehmer C, Luft FC, Lang F (2004) Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB. Obes Res 12:862–870. https://doi.org/10.1038/oby.2004.104

    Article  CAS  PubMed  Google Scholar 

  18. Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, Andreesen R, Gottfried E, Kreutz MP (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184:1200–1209. https://doi.org/10.4049/jimmunol.0902584

    Article  CAS  PubMed  Google Scholar 

  19. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899. https://doi.org/10.1158/0008-5472.CAN-03-2904

    Article  CAS  PubMed  Google Scholar 

  20. Engelman JA, Cantley LC (2008) A sweet new role for EGFR in cancer. Cancer Cell 13:375–376. https://doi.org/10.1016/j.ccr.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  21. Finlay D, Cantrell DA (2011) Metabolism, migration and memory in cytotoxic T cells. Nat Rev Immunol 11:109–117. https://doi.org/10.1038/nri2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fox CJ, Hammerman PS, Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5:844–852. https://doi.org/10.1038/nri1710

    Article  CAS  PubMed  Google Scholar 

  23. Frauwirth KA, Thompson CB (2004) Regulation of T lymphocyte metabolism. J Immunol 172:4661–4665. https://doi.org/10.4049/jimmunol.172.8.4661

    Article  CAS  PubMed  Google Scholar 

  24. Gaitan S, Escribano S, Sancho P, Cuenllas E, Tejero C (1997) Glucose metabolism in bone marrow cells and granulocytes of adult mice after X-ray (5 Gy) irradiation: relationship to cell functionality. Br J Haematol 96:559–565. https://doi.org/10.1046/j.1365-2141.1997.d01-2049.x

    Article  CAS  PubMed  Google Scholar 

  25. Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121:29–40. https://doi.org/10.1016/j.pharmthera.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  26. Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H, Sanberg PR (2007) Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One 2:e1205. https://doi.org/10.1371/journal.pone.0001205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gill SK, Hui K, Farne H, Garnett JP, Baines DL, Moore LS, Holmes AH, Filloux A, Tregoning JS (2016) Increased airway glucose increases airway bacterial load in hyperglycaemia. Sci Rep 6:27636. https://doi.org/10.1038/srep27636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gorboulev V, Schurmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolic I, Sendtner M, Koepsell H (2012) Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–196. https://doi.org/10.2337/db11-1029

    Article  CAS  PubMed  Google Scholar 

  29. Hirsch JR, Loo DD, Wright EM (1996) Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. J Biol Chem 271:14740–14746. https://doi.org/10.1074/jbc.271.25.14740

    Article  CAS  PubMed  Google Scholar 

  30. Hosseinzadeh Z, Bhavsar SK, Shojaiefard M, Saxena A, Merches K, Sopjani M, Alesutan I, Lang F (2011) Stimulation of the glucose carrier SGLT1 by JAK2. Biochem Biophys Res Commun 408:208–213. https://doi.org/10.1016/j.bbrc.2011.03.036

    Article  CAS  PubMed  Google Scholar 

  31. Humphrey BD, Stephensen CB, Calvert CC, Klasing KC (2004) Glucose and cationic amino acid transporter expression in growing chickens (Gallus gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 138:515–525. https://doi.org/10.1016/j.cbpb.2004.06.016

    Article  CAS  PubMed  Google Scholar 

  32. Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N (2001) SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res 92:874–879. https://doi.org/10.1111/j.1349-7006.2001.tb01175.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, Rathmell JC (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180:4476–4486

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs SR, Michalek RD, Rathmell JC (2010) IL-7 is essential for homeostatic control of T cell metabolism in vivo. J Immunol 184:3461–3469

    Article  CAS  PubMed  Google Scholar 

  35. Jain P, Manuel SL, Khan ZK, Ahuja J, Quann K, Wigdahl B (2009) DC-SIGN mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells. J Virol 83:10908–10921. https://doi.org/10.1128/JVI.01054-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones KS, Akel S, Petrow-Sadowski C, Huang Y, Bertolette DC, Ruscetti FW (2005) Induction of human T cell leukemia virus type I receptors on quiescent naive T lymphocytes by TGF-beta. J Immunol 174:4262–4270. https://doi.org/10.4049/jimmunol.174.7.4262

    Article  CAS  PubMed  Google Scholar 

  37. Jones KS, Fugo K, Petrow-Sadowski C, Huang Y, Bertolette DC, Lisinski I, Cushman SW, Jacobson S, Ruscetti FW (2006) Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 use different receptor complexes to enter T cells. J Virol 80:8291–8302. https://doi.org/10.1128/JVI.00389-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kavanagh Williamson M, Coombes N, Juszczak F, Athanasopoulos M, Khan MB, Eykyn TR, Srenathan U, Taams LS, Dias Zeidler J, Da Poian AT, Huthoff H (2018) Upregulation of glucose uptake and hexokinase activity of primary human CD4+ T cells in response to infection with HIV-1. Viruses 10. https://doi.org/10.3390/v10030114

  39. Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R (2008) Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol 295:G260–G272. https://doi.org/10.1152/ajpgi.00056.2008

    Article  CAS  PubMed  Google Scholar 

  40. Koepsell H (2017) The Na(+)-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 170:148–165. https://doi.org/10.1016/j.pharmthera.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  41. Kojima H, Kobayashi A, Sakurai D, Kanno Y, Hase H, Takahashi R, Totsuka Y, Semenza GL, Sitkovsky MV, Kobata T (2010) Differentiation stage-specific requirement in hypoxia-inducible factor-1alpha-regulated glycolytic pathway during murine B cell development in bone marrow. J Immunol 184:154–163. https://doi.org/10.4049/jimmunol.0800167

    Article  CAS  PubMed  Google Scholar 

  42. Kuo CW, Mirsaliotis A, Brighty DW (2011) Antibodies to the envelope glycoprotein of human T cell leukemia virus type 1 robustly activate cell-mediated cytotoxic responses and directly neutralize viral infectivity at multiple steps of the entry process. J Immunol 187:361–371

    Article  CAS  PubMed  Google Scholar 

  43. Lang F (2011) Risks and benefits of sweet pee. J Am Soc Nephrol 22:2–5. https://doi.org/10.1681/ASN.2010091006

    Article  PubMed  Google Scholar 

  44. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306. https://doi.org/10.1152/physrev.1998.78.1.247

    Article  CAS  PubMed  Google Scholar 

  45. Leiprecht N, Munoz C, Alesutan I, Siraskar G, Sopjani M, Foller M, Stubenrauch F, Iftner T, Lang F (2011) Regulation of Na(+)-coupled glucose carrier SGLT1 by human papillomavirus 18 E6 protein. Biochem Biophys Res Commun 404:695–700. https://doi.org/10.1016/j.bbrc.2010.12.044

    Article  CAS  PubMed  Google Scholar 

  46. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662. https://doi.org/10.1002/jcp.20166

    Article  CAS  PubMed  Google Scholar 

  47. Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC (2008) Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 84:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283. https://doi.org/10.1146/annurev-immunol-032712-095956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mackaness GB (2014) Pillars article: cellular resistance to infection. J. Exp. Med. 1962. 116: 381-406. J Immunol 193:3185–3221

    CAS  PubMed  Google Scholar 

  50. Matosin-Matekalo M, Mesonero JE, Delezay O, Poiree JC, Ilundain AA, Brot-Laroche E (1998) Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells. Biochem J 334(Pt 3):633–640. https://doi.org/10.1042/bj3340633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mauriello CT, Hair PS, Rohn RD, Rister NS, Krishna NK, Cunnion KM (2014) Hyperglycemia inhibits complement-mediated immunological control of S. aureus in a rat model of peritonitis. J Diabetes Res 2014:762051. https://doi.org/10.1155/2014/762051

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mendez LE, Manci N, Cantuaria G, Gomez-Marin O, Penalver M, Braunschweiger P, Nadji M (2002) Expression of glucose transporter-1 in cervical cancer and its precursors. Gynecol Oncol 86:138–143. https://doi.org/10.1006/gyno.2002.6745

    Article  CAS  PubMed  Google Scholar 

  53. Meszaros K, Bojta J, Bautista AP, Lang CH, Spitzer JJ (1991) Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver. Am J Phys 260:G7–G12. https://doi.org/10.1152/ajpgi.1991.260.1.G7

    Article  CAS  Google Scholar 

  54. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303. https://doi.org/10.4049/jimmunol.1003613

    Article  CAS  PubMed  Google Scholar 

  55. Moussa K, Michie HJ, Cree IA, McCafferty AC, Winter JH, Dhillon DP, Stephens S, Brown RA (1994) Phagocyte function and cytokine production in community acquired pneumonia. Thorax 49:107–111. https://doi.org/10.1136/thx.49.2.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Asp Med 34:121–138. https://doi.org/10.1016/j.mam.2012.07.001

    Article  CAS  Google Scholar 

  57. Nagel S, Papadakis M, Pfleger K, Grond-Ginsbach C, Buchan AM, Wagner S (2012) Microarray analysis of the global gene expression profile following hypothermia and transient focal cerebral ischemia. Neuroscience 208:109–122. https://doi.org/10.1016/j.neuroscience.2012.01.048

    Article  CAS  PubMed  Google Scholar 

  58. Palazzo M, Gariboldi S, Zanobbio L, Selleri S, Dusio GF, Mauro V, Rossini A, Balsari A, Rumio C (2008) Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa. J Immunol 181:3126–3136. https://doi.org/10.4049/jimmunol.181.5.3126

    Article  CAS  PubMed  Google Scholar 

  59. Park JB, Levine M (2000) Intracellular accumulation of ascorbic acid is inhibited by flavonoids via blocking of dehydroascorbic acid and ascorbic acid uptakes in HL-60, U937 and Jurkat cells. J Nutr 130:1297–1302. https://doi.org/10.1093/jn/130.5.1297

    Article  CAS  PubMed  Google Scholar 

  60. Philips BJ, Redman J, Brennan A, Wood D, Holliman R, Baines D, Baker EH (2005) Glucose in bronchial aspirates increases the risk of respiratory MRSA in intubated patients. Thorax 60:761–764. https://doi.org/10.1136/thx.2004.035766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, Cascante M, Bosca L (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185:605–614

    Article  CAS  PubMed  Google Scholar 

  62. Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, Scholz GM, Hamilton JA (2009) Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol 182:7974–7981

    Article  CAS  PubMed  Google Scholar 

  63. Rose T, Pillet AH, Lavergne V, Tamarit B, Lenormand P, Rousselle JC, Namane A, Theze J (2010) Interleukin-7 compartmentalizes its receptor signaling complex to initiate CD4 T lymphocyte response. J Biol Chem 285:14898–14908. https://doi.org/10.1074/jbc.M110.104232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rudlowski C, Becker AJ, Schroder W, Rath W, Buttner R, Moser M (2003) GLUT1 messenger RNA and protein induction relates to the malignant transformation of cervical cancer. Am J Clin Pathol 120:691–698. https://doi.org/10.1309/4KYN-QM58-62JW-2GD7

    Article  CAS  PubMed  Google Scholar 

  65. Rueda AM, Ormond M, Gore M, Matloobi M, Giordano TP, Musher DM (2010) Hyperglycemia in diabetics and non-diabetics: effect on the risk for and severity of pneumococcal pneumonia. J Inf Secur 60:99–105. https://doi.org/10.1016/j.jinf.2009.12.003

    Article  Google Scholar 

  66. Salker MS, Singh Y, Zeng N, Chen H, Zhang S, Umbach AT, Fakhri H, Kohlhofer U, Quintanilla-Martinez L, Durairaj RRP, Barros FSV, Vrljicak P, Ott S, Brucker SY, Wallwiener D, Vrhovac Madunic I, Breljak D, Sabolic I, Koepsell H, Brosens JJ, Lang F (2017) Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy. Sci Rep 7:12612. https://doi.org/10.1038/s41598-017-11674-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362

    CAS  PubMed  Google Scholar 

  68. Sharma P, Khairnar V, Madunic IV, Singh Y, Pandyra A, Salker MS, Koepsell H, Sabolic I, Lang F, Lang PA, Lang KS (2017) SGLT1 deficiency turns Listeria infection into a lethal disease in mice. Cell Physiol Biochem 42:1358–1365. https://doi.org/10.1159/000479197

    Article  CAS  PubMed  Google Scholar 

  69. Sheu SM, Cheng H, Kao CY, Yang YJ, Wu JJ, Sheu BS (2014) Higher glucose level can enhance the H. pylori adhesion and virulence related with type IV secretion system in AGS cells. J Biomed Sci 21:96. https://doi.org/10.1186/s12929-014-0096-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Simon-Molas H, Arnedo-Pac C, Fontova P, Vidal-Alabro A, Castano E, Rodriguez-Garcia A, Navarro-Sabate A, Lloberas N, Manzano A, Bartrons R (2018) PI3K-Akt signaling controls PFKFB3 expression during human T-lymphocyte activation. Mol Cell Biochem 448:187–197. https://doi.org/10.1007/s11010-018-3325-9

    Article  CAS  PubMed  Google Scholar 

  71. Song W, Li D, Tao L, Luo Q, Chen L (2020) Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B 10:61–78. https://doi.org/10.1016/j.apsb.2019.12.006

    Article  PubMed  Google Scholar 

  72. Sopjani M, Bhavsar SK, Fraser S, Kemp BE, Foller M, Lang F (2010) Regulation of Na+-coupled glucose carrier SGLT1 by AMP-activated protein kinase. Mol Membr Biol 27:137–144. https://doi.org/10.3109/09687681003616870

    Article  CAS  PubMed  Google Scholar 

  73. Subramanian S, Glitz P, Kipp H, Kinne RK, Castaneda F (2009) Protein kinase-A affects sorting and conformation of the sodium-dependent glucose co-transporter SGLT1. J Cell Biochem 106:444–452. https://doi.org/10.1002/jcb.22025

    Article  CAS  PubMed  Google Scholar 

  74. Szablewski L (2017) Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230:70–75. https://doi.org/10.1016/j.ijcard.2016.12.083

    Article  PubMed  Google Scholar 

  75. Tahrani AA, Barnett AH, Bailey CJ (2013) SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol 1:140–151. https://doi.org/10.1016/S2213-8587(13)70050-0

    Article  CAS  PubMed  Google Scholar 

  76. Trinchieri G, De Marchi M (1975) Antibody-dependent cell-mediated cytotoxicity in humans. II Energy requirement. J Immunol 115:256–260

    CAS  PubMed  Google Scholar 

  77. Vallon V (2014) Do tubular changes in the diabetic kidney affect the susceptibility to acute kidney injury? Nephron Clin Pract 127:133–138. https://doi.org/10.1159/000363554

    Article  CAS  PubMed  Google Scholar 

  78. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O, Radovic N, Jadrijevic S, Aleksic I, Walles T, Sauvant C, Sabolic I, Koepsell H (2015) Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898. https://doi.org/10.1007/s00424-014-1619-7

    Article  CAS  PubMed  Google Scholar 

  80. Wang G, Qian P, Jackson FR, Qian G, Wu G (2008) Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells. Int J Biochem Cell Biol 40:461–470. https://doi.org/10.1016/j.biocel.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  81. Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, Hung MC (2008) Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13:385–393. https://doi.org/10.1016/j.ccr.2008.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Arch 447:510–518. https://doi.org/10.1007/s00424-003-1063-6

    Article  CAS  PubMed  Google Scholar 

  83. Zeng N, Okumura T, Alauddin M, Khozooei S, Rajaxavier J, Zhang S, Singh Y, Shi B, Brucker SY, Wallwiener D, Takeda S, Lang F, Salker MS (2020) LEFTY2/endometrial bleeding-associated factor up-regulates Na+ coupled glucose transporter SGLT1 expression and glycogen accumulation in endometrial cancer cells. PLoS One 15:e0230044. https://doi.org/10.1371/journal.pone.0230044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang T, Zhang Z, Li F, Ping Y, Qin G, Zhang C, Zhang Y (2018) miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism. J Immunol 201:2165–2175. https://doi.org/10.4049/jimmunol.1800230

    Article  CAS  PubMed  Google Scholar 

  85. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD (2009) Anergic T cells are metabolically anergic. J Immunol 183:6095–6101. https://doi.org/10.4049/jimmunol.0803510

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Glucose Transporters in Health and Disease in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, F., Singh, Y., Salker, M.S. et al. Glucose transport in lymphocytes. Pflugers Arch - Eur J Physiol 472, 1401–1406 (2020). https://doi.org/10.1007/s00424-020-02416-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02416-y

Keywords

Navigation