Skip to main content

Advertisement

Log in

Rare CACNA1A mutations leading to congenital ataxia

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Human mutations in the CACNA1A gene that encodes the pore-forming α1A subunit of the voltage-gated CaV2.1 (P/Q-type) Ca2+ channel cause multiple neurological disorders including sporadic and familial hemiplegic migraine, as well as cerebellar pathologies such as episodic ataxia, progressive ataxia, and early-onset cerebellar syndrome consistent with the definition of congenital ataxia (CA), with presentation before the age of 2 years. Such a pathological role is in accordance with the physiological relevance of CaV2.1 in neuronal tissue, especially in the cerebellum. This review deals with the report of the main clinical features defining CA, along with the presentation of an increasing number of CACNA1A genetic variants linked to this severe cerebellar disorder in the context of Ca2+ homeostasis alteration. Moreover, the review describes each pathological mutation according to structural location and known molecular and cellular functional effects in both heterologous expression systems and animal models. In view of this information in correlation with the clinical phenotype, we take into consideration different pathomechanisms underlying the observed motor dysfunction in CA patients carrying CACNA1A mutations. Present therapeutic management in CA and options for the development of future personalized treatment based on CaV2.1 dysfunction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aggarwal SK, MacKinnon R (1996) Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16:1169–1177. https://doi.org/10.1016/S0896-6273(00)80143-9

    Article  CAS  PubMed  Google Scholar 

  2. Ando H, Hirose M, Mikoshiba K (2018) Aberrant IP3 receptor activities revealed by comprehensive analysis of pathological mutations causing spinocerebellar ataxia 29. Proc Natl Acad Sci U S A 115:12259–12264. https://doi.org/10.1073/pnas.1811129115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aspatwar A, Tolvanen MEE, Jokitalo E, Parikka M, Ortutay C, Harjula S-KE, Rämet M, Vihinen M, Parkkila S (2013) Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish. Hum Mol Genet 22:417–432. https://doi.org/10.1093/hmg/dds438

    Article  CAS  PubMed  Google Scholar 

  4. Bahamonde MI, Serra SA, Drechsel O, Rahman R, Marcé-Grau A, Prieto M, Ossowski S, Macaya A, Fernández-Fernández JM (2015) A Single amino acid deletion (ΔF1502) in the S6 segment of CaV2.1 domain III associated with congenital ataxia increases channel activity and promotes Ca2+ influx. PLoS One 10:e0146035. https://doi.org/10.1371/journal.pone.0146035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barresi S, Niceta M, Alfieri P, Brankovic V, Piccini G, Bruselles A, Barone MR, Cusmai R, Tartaglia M, Bertini E, Zanni G (2017) Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant nonprogressive congenital ataxia. Clin Genet 91:86–91. https://doi.org/10.1111/cge.12783

    Article  CAS  PubMed  Google Scholar 

  6. Berridge MJ (2016) The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol Rev 96:1261–1296. https://doi.org/10.1152/physrev.00006.2016

    Article  CAS  PubMed  Google Scholar 

  7. Bertini E, Zanni G, Boltshauser E (2018) Nonprogressive congenital ataxias. Handb Clin Neurol 155:91–103. https://doi.org/10.1016/B978-0-444-64189-2.00006-8

    Article  PubMed  Google Scholar 

  8. Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378:623–626. https://doi.org/10.1038/378623a0

    Article  CAS  PubMed  Google Scholar 

  9. Blumkin L, Leshinsky-Silver E, Michelson M, Zerem A, Kivity S, Lev D, Lerman-Sagie T (2015) Paroxysmal tonic upward gaze as a presentation of de-novo mutations in CACNA1A. Eur J Paediatr Neurol 19:292–297. https://doi.org/10.1016/j.ejpn.2014.12.018

    Article  PubMed  Google Scholar 

  10. Blumkin L, Michelson M, Leshinsky-Silver E, Kivity S, Lev D, Lerman-Sagie T (2010) Congenital ataxia, mental retardation, and dyskinesia associated with a novel CACNA1A mutation. J Child Neurol 25:892–897. https://doi.org/10.1177/0883073809351316

    Article  PubMed  Google Scholar 

  11. Bravin M, Morando L, Vercelli A, Rossi F, Strata P (1999) Control of spine formation by electrical activity in the adult rat cerebellum. Proc Natl Acad Sci U S A 96:1704–1709. https://doi.org/10.1073/pnas.96.4.1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buraei Z, Anghelescu M, Elmslie KS (2005) Slowed N-type calcium channel (CaV2.2) deactivation by the cyclin-dependent kinase inhibitor roscovitine. Biophys J 89:1681–1691. https://doi.org/10.1529/biophysj.104.052837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calì T, Frizzarin M, Luoni L, Zonta F, Pantano S, Cruz C, Bonza MC, Bertipaglia I, Ruzzene M, De Michelis MI, Damiano N, Marin O, Zanni G, Zanotti G, Brini M, Lopreiato R, Carafoli E (2017) The ataxia related G1107D mutation of the plasma membrane Ca2+ ATPase isoform 3 affects its interplay with calmodulin and the autoinhibition process. Biochim Biophys Acta Mol basis Dis 1863:165–173. https://doi.org/10.1016/j.bbadis.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  14. Calì T, Lopreiato R, Shimony J, Vineyard M, Frizzarin M, Zanni G, Zanotti G, Brini M, Shinawi M, Carafoli E (2015) A novel mutation in isoform 3 of the plasma membrane Ca2+ pump impairs cellular Ca2+ homeostasis in a patient with cerebellar ataxia and laminin subunit 1α mutations. J Biol Chem 290:16132–16141. https://doi.org/10.1074/jbc.M115.656496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Camia F, Pisciotta L, Morana G, Schiaffino MC, Renna S, Carrera P, Ferrari M, Baglietto MG, Veneselli E, Siri L, Mancardi MM (2017) Combined early treatment in hemiplegic attacks related to CACNA1A encephalopathy with brain oedema: Blocking the cascade? Cephalalgia 37:1202–1206. https://doi.org/10.1177/0333102416668655

    Article  PubMed  Google Scholar 

  16. Campos FV, Chanda B, Roux B, Bezanilla F (2007) Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K+ channel. Proc Natl Acad Sci U S A 104:7904–7909. https://doi.org/10.1073/pnas.0702638104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carreño O, Corominas R, Serra SA, Sintas C, Fernández-Castillo N, Vila-Pueyo M, Toma C, Gené GG, Pons R, Llaneza M, Sobrido M-J, Grinberg D, Valverde MA, Fernández-Fernández JM, Macaya A, Cormand B (2013) Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies. Mol Genet Genomic Med 1:206–222. https://doi.org/10.1002/mgg3.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Casey JP, Hirouchi T, Hisatsune C, Lynch B, Murphy R, Dunne AM, Miyamoto A, Ennis S, van der Spek N, O’Hici B, Mikoshiba K, Lynch SA (2017) A novel gain-of-function mutation in the ITPR1 suppressor domain causes spinocerebellar ataxia with altered Ca2+ signal patterns. J Neurol 264:1444–1453. https://doi.org/10.1007/s00415-017-8545-5

    Article  CAS  PubMed  Google Scholar 

  19. Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901. https://doi.org/10.1016/j.neuron.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  20. Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:1–23. https://doi.org/10.1101/cshperspect.a003947

    Article  CAS  Google Scholar 

  22. Chan Y-C, Burgunder J-M, Wilder-Smith E, Chew S-E, Lam-Mok-Sing KMJ, Sharma V, Ong BKC (2008) Electroencephalographic changes and seizures in familial hemiplegic migraine patients with the CACNA1A gene S218L mutation. J Clin Neurosci 15:891–894. https://doi.org/10.1016/j.jocn.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  23. Cho S, Meriney SD (2006) The effects of presynaptic calcium channel modulation by roscovitine on transmitter release at the adult frog neuromuscular junction. Eur J Neurosci 23:3200–3208. https://doi.org/10.1111/j.1460-9568.2006.04849.x

    Article  PubMed  Google Scholar 

  24. Christel C, Lee A (2012) Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta 1820:1243–1252. https://doi.org/10.1016/j.bbagen.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  25. Cricchi F, Di Lorenzo C, Grieco GS, Rengo C, Cardinale A, Racaniello M, Santorelli FM, Nappi G, Pierelli F, Casali C (2007) Early-onset progressive ataxia associated with the first CACNA1A mutation identified within the I-II loop. J Neurol Sci 254:69–71. https://doi.org/10.1016/j.jns.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  26. Cuenca-León E, Banchs I, Serra SA, Latorre P, Fernàndez-Castillo N, Corominas R, Valverde MA, Volpini V, Fernández-Fernández JM, Macaya A, Cormand B (2009) Late-onset episodic ataxia type 2 associated with a novel loss-of-function mutation in the CACNA1A gene. J Neurol Sci 280:10–14. https://doi.org/10.1016/j.jns.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  27. Debiais S, Hommet C, Bonnaud I, Barthez MA, Rimbaux S, Riant F, Autret A (2009) The FHM1 mutation S218L: A severe clinical phenotype? A case report and review of the literature. Cephalalgia 29:1337–1339. https://doi.org/10.1111/j.1468-2982.2009.01884.x

    Article  CAS  PubMed  Google Scholar 

  28. Denier C, Ducros A, Durr A, Eymard B, Chassande B, Tournier-Lasserve E (2001) Missense CACNA1A mutation causing episodic ataxia type 2. Arch Neurol 58:292–295. https://doi.org/10.1001/archneur.58.2.292

    Article  CAS  PubMed  Google Scholar 

  29. Dolphin AC (2003) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607–627. https://doi.org/10.1124/pr.55.4.3

    Article  CAS  PubMed  Google Scholar 

  30. Dolphin AC (2016) Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 594:5369–5390. https://doi.org/10.1113/JP272262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dorgans K, Salvi J, Bertaso F, Bernard L, Lory P, Doussau F, Mezghrani A (2017) Characterization of the dominant inheritance mechanism of Episodic Ataxia type 2. Neurobiol Dis 106:110–123. https://doi.org/10.1016/j.nbd.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  32. Ducros A, Denier C, Joutel A, Cecillon M, Lescoat C, Vahedi K, Darcel F, Vicaut E, Bousser MG, Tournier-Lasserve E (2001) The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 345:17–24. https://doi.org/10.1056/NEJM200107053450103

    Article  CAS  PubMed  Google Scholar 

  33. Ducros A, Denier C, Joutel A, Vahedi K, Michel A, Darcel F, Madigand M, Guerouaou D, Tison F, Julien J, Hirsch E, Chedru F, Bisgård C, Lucotte G, Després P, Billard C, Barthez MA, Ponsot G, Bousser MG, Tournier-Lasserve E (1999) Recurrence of the T666M calcium channel CACNA1A gene mutation in familial hemiplegic migraine with progressive cerebellar ataxia. Am J Hum Genet 64:89–98. https://doi.org/10.1086/302192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eikermann-Haerter K, Dileköz E, Kudo C, Savitz SI, Waeber C, Baum MJ, Ferrari MD, van den Maagdenberg AMJM, Moskowitz MA, Ayata C (2009) Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 119:99–109. https://doi.org/10.1172/JCI36059

    Article  CAS  PubMed  Google Scholar 

  35. Eilers J, Plant T, Konnerth A (1996) Localized calcium signalling and neuronal integration in cerebellar Purkinje neurones. Cell Calcium 20:215–226

    Article  CAS  PubMed  Google Scholar 

  36. Epi4K Consortium (2016) De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet 99:287–298 https://doi.org/10.1016/j.ajhg.2016.06.003

  37. Epperson MV, Haws ME, Standridge SM, Gilbert DL (2018) An atypical Rett Syndrome phenotype due to a novel missense mutation in CACNA1A. J Child Neurol 33:286–289. https://doi.org/10.1177/0883073818754987

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fitzsimons RB, Wolfenden WH (1985) Migraine coma: meningitic migraine with cerebral oedema associated with a new form of autosomal dominant cerebellar ataxia. Brain 108:555–577. https://doi.org/10.1093/brain/108.3.555-a

    Article  PubMed  Google Scholar 

  39. Fletcher CF, Tottene A, Lennon VA, Wilson SM, Dubel SJ, Paylor R, Hosford DA, Tessarollo L, McEnery MW, Pietrobon D, Copeland NG, Jenkins NA (2001) Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J 15:1288–1290. https://doi.org/10.1096/fj.00-0562fje

    Article  CAS  PubMed  Google Scholar 

  40. Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, Wang X, Quintero-Rivera F, Vilain E, Grody WW, Perlman S, Geschwind DH, Nelson SF (2014) Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 71:1237–1246. https://doi.org/10.1001/jamaneurol.2014.1944

    Article  PubMed  PubMed Central  Google Scholar 

  41. Freilinger T, Bohe M, Wegener B, Müller-Myhsok B, Dichgans M, Knoblauch H (2008) Expansion of the phenotypic spectrum of the CACNA1A T666M mutation: a family with familial hemiplegic migraine type 1, cerebellar atrophy and mental retardation. Cephalalgia 28:403–407. https://doi.org/10.1111/j.1468-2982.2008.01540.x

    Article  CAS  PubMed  Google Scholar 

  42. Frusciante R, Capuano A, Travaglini L, Zanni G, Vigevano F, Bertini E, Valeriani M (2015) P016. Congenital ataxia, hemiplegic migraine due to a novel mutation of CACNA1A: a case report. J Headache Pain 16:A146. https://doi.org/10.1186/1129-2377-16-S1-A146

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fusi F, Valoti M, Frosini M, Sgaragli GP (1999) 2,5-Di-t-butyl-1,4-benzohydroquinone induces endothelium-dependent relaxation of rat thoracic aorta. Eur J Pharmacol 366:181–187. https://doi.org/10.1016/S0014-2999(98)00932-7

    Article  CAS  PubMed  Google Scholar 

  44. Gao Z, Todorov B, Barrett CF, van Dorp S, Ferrari MD, van den Maagdenberg AMJM, De Zeeuw CI, Hoebeek FE (2012) Cerebellar ataxia by enhanced CaV2.1 currents is alleviated by Ca2+-dependent K+-channel activators in Cacna1a(S218L) mutant mice. J Neurosci 32:15533–15546. https://doi.org/10.1523/JNEUROSCI.2454-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. García Segarra N, Gautschi I, Mittaz-Crettol L, Kallay Zetchi C, Al-Qusairi L, van Bemmelen MX, Maeder P, Bonafé L, Schild L, Roulet-Perez E (2014) Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A. J Neurol Sci 342:69–78. https://doi.org/10.1016/j.jns.2014.04.027

    Article  CAS  PubMed  Google Scholar 

  46. Garza-López E, González-Ramírez R, Gandini MA, Sandoval A, Felix R (2013) The familial hemiplegic migraine type 1 mutation K1336E affects direct G protein-mediated regulation of neuronal P/Q-type Ca2+ channels. Cephalalgia 33:398–407. https://doi.org/10.1177/0333102412475236

    Article  PubMed  Google Scholar 

  47. Garza-López E, Sandoval A, González-Ramírez R, Gandini MA, van den Maagdenberg A, De Waard M, Felix R (2012) Familial hemiplegic migraine type 1 mutations W1684R and V1696I alter G protein-mediated regulation of CaV2.1 voltage-gated calcium channels. Biochim Biophys Acta 1822:1238–1246. https://doi.org/10.1016/j.bbadis.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  48. Guerin AA, Feigenbaum A, Donner EJ, Yoon G (2008) Stepwise developmental regression associated with novel CACNA1A mutation. Pediatr Neurol 39:363–364. https://doi.org/10.1016/j.pediatrneurol.2008.07.030

    Article  PubMed  Google Scholar 

  49. Guida S, Trettel F, Pagnutti S, Mantuano E, Tottene A, Veneziano L, Fellin T, Spadaro M, Stauderman K, Williams M, Volsen S, Ophoff R, Frants R, Jodice C, Frontali M, Pietrobon D (2001) Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am J Hum Genet 68:759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Di Guilmi MN, Wang T, Inchauspe CG, Forsythe ID, Ferrari MD, van den Maagdenberg AMJM, Borst JGG, Uchitel OD (2014) Synaptic gain-of-function effects of mutant CaV2.1 channels in a mouse model of familial hemiplegic migraine are due to increased basal [Ca2+]i. J Neurosci 34:7047–7058. https://doi.org/10.1523/JNEUROSCI.2526-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haitin Y, Yisharel I, Malka E, Shamgar L, Schottelndreier H, Peretz A, Paas Y, Attali B (2008) S1 constrains S4 in the voltage sensor domain of Kv7.1 K+ channels. PLoS One 3:e1935. https://doi.org/10.1371/journal.pone.0001935

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hans M, Luvisetto S, Williams ME, Spagnolo M, Urrutia A, Tottene A, Brust PF, Johnson EC, Harpold MM, Stauderman KA, Pietrobon D (1999) Functional consequences of mutations in the human α1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 19:1610–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hirasawa M, Xu X, Trask RB, Maddatu TP, Johnson BA, Naggert JK, Nishina PM, Ikeda A (2007) Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Mol Cell Neurosci 35:161–170. https://doi.org/10.1016/j.mcn.2007.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hirota J, Ando H, Hamada K, Mikoshiba K (2003) Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J 372:435–441. https://doi.org/10.1042/BJ20030110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hisatsune C, Hamada K, Mikoshiba K (2018) Ca2+ signaling and spinocerebellar ataxia. Biochim Biophys Acta, Mol Cell Res 1865:1733–1744. https://doi.org/10.1016/j.bbamcr.2018.05.009

    Article  CAS  Google Scholar 

  56. Horak S, Koschak A, Stuppner H, Striessnig J (2009) Use-dependent block of voltage-gated CaV2.1 Ca2+ channels by petasins and eudesmol isomers. J Pharmacol Exp Ther 330:220–226. https://doi.org/10.1124/jpet.109.151183

    Article  CAS  PubMed  Google Scholar 

  57. Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, Zou R, Schofield PW, Douglas S, Bulman DE, Boycott KM (2012) Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 7:67. https://doi.org/10.1186/1750-1172-7-67

    Article  PubMed  PubMed Central  Google Scholar 

  58. Imbrici P, Eunson LH, Graves TD, Bhatia KP, Wadia NH, Kullmann DM, Hanna MG (2005) Late-onset episodic ataxia type 2 due to an in-frame insertion in CACNA1A. Neurology 65:944–946. https://doi.org/10.1212/01.wnl.0000176069.64200.28

    Article  CAS  PubMed  Google Scholar 

  59. Imbrici P, Jaffe SL, Eunson LH, Davies NP, Herd C, Robertson R, Kullmann DM, Hanna MG (2004) Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain 127:2682–2692. https://doi.org/10.1093/brain/awh301

    Article  PubMed  Google Scholar 

  60. Inagaki A, Frank CA, Usachev YM, Benveniste M, Lee A (2014) Pharmacological correction of gating defects in the voltage-gated CaV2.1 Ca2+ channel due to a familial hemiplegic migraine mutation. Neuron 81:91–102. https://doi.org/10.1016/j.neuron.2013.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Izquierdo-Serra M, Martínez-Monseny AF, López L, Carrillo-García J, Edo A, Ortigoza-Escobar JD, García Ó, Cancho-Candela R, Carrasco-Marina ML, Gutiérrez-Solana LG, Cuadras D, Muchart J, Montero R, Artuch R, Pérez-Cerdá C, Pérez B, Pérez-Dueñas B, Macaya A, Fernández-Fernández JM, Serrano M (2018) Stroke-like episodes and cerebellar syndrome in phosphomannomutase deficiency (PMM2-CDG): evidence for hypoglycosylation-driven channelopathy. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020619

  62. Jiang X, Raju PK, D’Avanzo N, Lachance M, Pepin J, Dubeau F, Mitchell WG, Bello-Espinosa LE, Pierson TM, Minassian BA, Lacaille JC, Rossignol E (2019) Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia 60:1881–1894. https://doi.org/10.1111/epi.16316

    Article  CAS  PubMed  Google Scholar 

  63. Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG, Li X, Roe BA, LeDoux MS, Gu W (2005) Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171:1239–1246. https://doi.org/10.1534/genetics.105.044487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones LP, Patil PG, Snutch TP, Yue DT (1997) G-protein modulation of N-type calcium channel gating current in human embryonic kidney cells (HEK 293). J Physiol 498(Pt 3):601–610. https://doi.org/10.1113/jphysiol.1997.sp021886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kasumu A, Bezprozvanny I (2012) Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias. Cerebellum 11:630–639. https://doi.org/10.1007/s12311-010-0182-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaya N, Aldhalaan H, Al-Younes B, Colak D, Shuaib T, Al-Mohaileb F, Al-Sugair A, Nester M, Al-Yamani S, Al-Bakheet A, Al-Hashmi N, Al-Sayed M, Meyer B, Jungbluth H, Al-Owain M (2011) Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am J Med Genet B Neuropsychiatr Genet 156B:826–834. https://doi.org/10.1002/ajmg.b.31227

    Article  CAS  PubMed  Google Scholar 

  67. Klein JL, Lemmon ME, Northington FJ, Boltshauser E, Huisman TAGM, Poretti A (2016) Clinical and neuroimaging features as diagnostic guides in neonatal neurology diseases with cerebellar involvement. Cerebellum & Ataxias 3:1. https://doi.org/10.1186/s40673-016-0039-1

    Article  Google Scholar 

  68. Knierim E, Leisle L, Wagner C, Weschke B, Lucke B, Bohner G, Dreier JP, Schuelke M (2011) Recurrent stroke due to a novel voltage sensor mutation in CaV2.1 responds to verapamil. Stroke 42:e14–e17. https://doi.org/10.1161/STROKEAHA.110.600023

    Article  CAS  PubMed  Google Scholar 

  69. Kors EE, Terwindt GM, Vermeulen FL, Fitzsimons RB, Jardine PE, Heywood P, Love S, van den Maagdenberg AM, Haan J, Frants RR, Ferrari MD (2001) Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 49:753–760. https://doi.org/10.1002/ana.1031

    Article  CAS  PubMed  Google Scholar 

  70. Kotagal V (2012) Acetazolamide-responsive ataxia. Semin Neurol 32:533–537. https://doi.org/10.1055/s-0033-1334475

    Article  PubMed  Google Scholar 

  71. Kraus RL, Sinnegger MJ, Glossmann H, Hering S, Striessnig J (1998) Familial hemiplegic migraine mutations change α1A Ca2+ channel kinetics. J Biol Chem 273:5586–5590. https://doi.org/10.1074/jbc.273.10.5586

    Article  CAS  PubMed  Google Scholar 

  72. Kraus RL, Sinnegger MJ, Koschak A, Glossmann H, Stenirri S, Carrera P, Striessnig J (2000) Three new familial hemiplegic migraine mutants affect P/Q-type Ca2+ channel kinetics. J Biol Chem 275:9239–9243. https://doi.org/10.1074/jbc.275.13.9239

    Article  CAS  PubMed  Google Scholar 

  73. Lee A, Zhou H, Scheuer T, Catterall WA (2003) Molecular determinants of Ca2+/calmodulin-dependent regulation of CaV2.1 channels. Proc Natl Acad Sci U S A 100:16059–16064. https://doi.org/10.1073/pnas.2237000100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liang M, Tarr TB, Bravo-Altamirano K, Valdomir G, Rensch G, Swanson L, DeStefino NR, Mazzarisi CM, Olszewski RA, Wilson GM, Meriney SD, Wipf P (2012) Synthesis and biological evaluation of a selective N- and P/Q-type calcium channel agonist. ACS Med Chem Lett 3:985–990. https://doi.org/10.1021/ml3002083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luo X, Rosenfeld JA, Yamamoto S, Harel T, Zuo Z, Hall M, Wierenga KJ, Pastore MT, Bartholomew D, Delgado MR, Rotenberg J, Lewis RA, Emrick L, Bacino CA, Eldomery MK, Coban Akdemir Z, Xia F, Yang Y, Lalani SR, Lotze T, Lupski JR, Lee B, Bellen HJ, Wangler MF, Members of the UDN (2017) Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genet 13:e1006905. https://doi.org/10.1371/journal.pgen.1006905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van den Maagdenberg AMJM, Pietrobon D, Pizzorusso T, Kaja S, Broos LAM, Cesetti T, van de Ven RCG, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41:701–710. https://doi.org/10.1016/S0896-6273(04)00085-6

    Article  PubMed  Google Scholar 

  77. van den Maagdenberg AMJM, Pizzorusso T, Kaja S, Terpolilli N, Shapovalova M, Hoebeek FE, Barrett CF, Gherardini L, van de Ven RCG, Todorov B, Broos LAM, Tottene A, Gao Z, Fodor M, De Zeeuw CI, Frants RR, Plesnila N, Plomp JJ, Pietrobon D, Ferrari MD (2010) High cortical spreading depression susceptibility and migraine-associated symptoms in CaV2.1 S218L mice. Ann Neurol 67:85–98. https://doi.org/10.1002/ana.21815

    Article  CAS  PubMed  Google Scholar 

  78. Maddison P (2012) Treatment in Lambert-Eaton myasthenic syndrome. Ann N Y Acad Sci 1275:78–84. https://doi.org/10.1111/j.1749-6632.2012.06769.x

    Article  CAS  PubMed  Google Scholar 

  79. Martínez-Monseny AF, Bolasell M, Callejón-Póo L, Cuadras D, Freniche V, Itzep DC, Gassiot S, Arango P, Casas-Alba D, de la Morena E, Corral J, Montero R, Pérez-Cerdá C, Pérez B, Artuch R, Jaeken J, Serrano M, CDG Spanish Consortium (2019) AZATAX: acetazolamide safety and efficacy in cerebellar syndrome in PMM2 congenital disorder of glycosylation (PMM2-CDG). Ann Neurol 85:740–751. https://doi.org/10.1002/ana.25457

    Article  CAS  PubMed  Google Scholar 

  80. Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536. https://doi.org/10.1111/j.1432-1033.1997.t01-2-00527.x

    Article  CAS  PubMed  Google Scholar 

  81. Melliti K, Grabner M, Seabrook GR (2003) The familial hemiplegic migraine mutation R192Q reduces G-protein-mediated inhibition of P/Q-type (CaV2.1) calcium channels expressed in human embryonic kidney cells. J Physiol 546:337–347. https://doi.org/10.1113/jphysiol.2002.026716

    Article  CAS  PubMed  Google Scholar 

  82. Miki T, Zwingman TA, Wakamori M, Lutz CM, Cook SA, Hosford DA, Herrup K, Fletcher CF, Mori Y, Frankel WN, Letts VA (2008) Two novel alleles of tottering with distinct CaV2.1 calcium channel neuropathologies. Neuroscience 155:31–44. https://doi.org/10.1016/j.neuroscience.2008.05.028

    Article  CAS  PubMed  Google Scholar 

  83. Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446. https://doi.org/10.1111/j.1471-4159.2007.04825.x

    Article  CAS  PubMed  Google Scholar 

  84. Millichap JG, Woodbury DM, Goodman LS (1955) Mechanism of the anticonvulsant action of acetazoleamide, a carbonic anhydrase inhibitor. J Pharmacol Exp Ther 115:251–258

    CAS  PubMed  Google Scholar 

  85. Moore GA, McConkey DJ, Kass GEN, O’Brien PJ, Orrenius S (1987) 2,5-Di(tert-butyl)-1,4-benzohydroquinone—a novel inhibitor of liver microsomal Ca2+ sequestration. FEBS Lett 224:331–336. doi: https://doi.org/10.1016/0014-5793(87)80479-9

  86. Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K (2000) Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci 20:5654–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Müllner C, Broos LA, van den Maagdenberg AMJM, Striessnig J (2004) Familial hemiplegic migraine type 1 mutations K1336E, W1684R, and V1696I alter CaV2.1 Ca2+ channel gating: evidence for beta-subunit isoform-specific effects. J Biol Chem 279:51844–51850. https://doi.org/10.1074/jbc.M408756200

    Article  CAS  PubMed  Google Scholar 

  88. Naik S, Pohl K, Malik M, Siddiqui A, Josifova D (2011) Early-onset cerebellar atrophy associated with mutation in the CACNA1A gene. Pediatr Neurol 45:328–330. https://doi.org/10.1016/j.pediatrneurol.2011.08.002

    Article  PubMed  Google Scholar 

  89. Ngo KJ, Poke G, Neas K, Fogel BL (2019) Spinocerebellar ataxia type 29 in a family of Māori descent. Cerebellum & Ataxias 6:14. https://doi.org/10.1186/s40673-019-0108-3

    Article  Google Scholar 

  90. Nimmrich V, Gross G (2012) P/Q-type calcium channel modulators. Br J Pharmacol 167:741–759. https://doi.org/10.1111/j.1476-5381.2012.02069.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ohba C, Osaka H, Iai M, Yamashita S, Suzuki Y, Aida N, Shimozawa N, Takamura A, Doi H, Tomita-Katsumoto A, Nishiyama K, Tsurusaki Y, Nakashima M, Miyake N, Eto Y, Tanaka F, Matsumoto N, Saitsu H (2013) Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics 14:225–232. https://doi.org/10.1007/s10048-013-0375-8

    Article  CAS  PubMed  Google Scholar 

  92. Omata T, Takanashi J i, Wada T, Arai H, Tanabe Y (2011) Genetic diagnosis and acetazolamide treatment of familial hemiplegic migraine. Brain and Development 33:332–334. https://doi.org/10.1016/j.braindev.2010.05.006

    Article  PubMed  Google Scholar 

  93. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–359. https://doi.org/10.1038/nature10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pietrobon D (2010) CaV2.1 channelopathies. Pflugers Arch 460:375–393. https://doi.org/10.1007/s00424-010-0802-8

    Article  CAS  PubMed  Google Scholar 

  95. Pietrobon D (2013) Calcium channels and migraine. Biochim Biophys Acta 1828:1655–1665. https://doi.org/10.1016/j.bbamem.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  96. Pringos E, Crouzin N, Cavalier M, Guiramand J, Cohen-Solal C, Martinez J, Vignes M, Rolland V (2012) Synthesis and characterization of a cyclooctapeptide analogue of ω-agatoxin IVB enhancing the activity of CaV2.1 calcium channels activity in cultured hippocampal neurons. Neurochem Int 61:632–639. https://doi.org/10.1016/j.neuint.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  97. Rajakulendran S, Graves TD, Labrum RW, Kotzadimitriou D, Eunson L, Davis MB, Davies R, Wood NW, Kullmann DM, Hanna MG, Schorge S (2010) Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. J Physiol 588:1905–1913. https://doi.org/10.1113/jphysiol.2009.186437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rajakulendran S, Kaski D, Hanna MG (2012) Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol 8:86–96

    Article  CAS  PubMed  Google Scholar 

  99. Rose SJ, Kriener LH, Heinzer AK, Fan X, Raike RS, van den Maagdenberg AMJM, Hess EJ (2014) The first knockin mouse model of episodic ataxia type 2. Exp Neurol 261:553–562. https://doi.org/10.1016/j.expneurol.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  100. Sasaki M, Ohba C, Iai M, Hirabayashi S, Osaka H, Hiraide T, Saitsu H, Matsumoto N (2015) Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. J Neurol 262:1278–1284. https://doi.org/10.1007/s00415-015-7705-8

    Article  CAS  PubMed  Google Scholar 

  101. Scoggan KA, Friedman JH, Bulman DE (2006) CACNA1A mutation in a EA-2 patient responsive to acetazolamide and valproic acid. Can J Neurol Sci 33:68–72. https://doi.org/10.1017/S0317167100004728

    Article  PubMed  Google Scholar 

  102. Serra SA, Cuenca-León E, Llobet A, Rubio-Moscardo F, Plata C, Carreño O, Fernàndez-Castillo N, Corominas R, Valverde MA, Macaya A, Cormand B, Fernández-Fernández JM (2010) A mutation in the first intracellular loop of CACNA1A prevents P/Q channel modulation by SNARE proteins and lowers exocytosis. Proc Natl Acad Sci U S A 107:1672–1677. https://doi.org/10.1073/pnas.0908359107

    Article  PubMed  PubMed Central  Google Scholar 

  103. Serra SA, Fernàndez-Castillo N, Macaya A, Cormand B, Valverde MA, Fernández-Fernández JM (2009) The hemiplegic migraine-associated Y1245C mutation in CACNA1A results in a gain of channel function due to its effect on the voltage sensor and G-protein-mediated inhibition. Pflugers Arch 458:489–502. https://doi.org/10.1007/s00424-009-0637-3

    Article  CAS  PubMed  Google Scholar 

  104. Serra SA, Gené GG, Elorza-Vidal X, Fernández-Fernández JM (2018) Cross talk between β subunits, intracellular Ca2+ signaling, and SNAREs in the modulation of CaV2.1 channel steady-state inactivation. Physiol Rep 6. doi: 10.14814/phy2.13557

  105. Serrano NL, De Diego V, Cuadras D, Martinez Monseny AF, Velázquez-Fragua R, López L, Felipe A, Gutiérrez-Solana LG, Macaya A, Pérez-Dueñas B, Serrano M, CDG Spanish-Consortium (2017) A quantitative assessment of the evolution of cerebellar syndrome in children with phosphomannomutase-deficiency (PMM2-CDG). Orphanet J Rare Dis 12:155. https://doi.org/10.1186/s13023-017-0707-0

    Article  PubMed  PubMed Central  Google Scholar 

  106. Shadrina MI, Shulskaya MV, Klyushnikov SA, Nikopensius T, Nelis M, Kivistik PA, Komar AA, Limborska SA, Illarioshkin SN, Slominsky PA (2016) ITPR1 gene p.Val1553Met mutation in Russian family with mild Spinocerebellar ataxia. Cerebellum & Ataxias 3:2. https://doi.org/10.1186/s40673-016-0040-8

    Article  CAS  Google Scholar 

  107. Sotelo C, Hillman DE, Zamora AJ, Llinás R (1975) Climbing fiber deafferentation: its action on Purkinje cell dendritic spines. Brain Res 98:574–581. https://doi.org/10.1016/0006-8993(75)90374-1

    Article  CAS  PubMed  Google Scholar 

  108. Spacey SD, Hildebrand ME, Materek LA, Bird TD, Snutch TP (2004) Functional implications of a novel EA2 mutation in the P/Q-type calcium channel. Ann Neurol 56:213–220. https://doi.org/10.1002/ana.20169

    Article  CAS  PubMed  Google Scholar 

  109. Stam AH, Luijckx GJ, Poll-Thé BT, Ginjaar IB, Frants RR, Haan J, Ferrari MD, Terwindt GM, van den Maagdenberg AMJM (2009) Early seizures and cerebral oedema after trivial head trauma associated with the CACNA1A S218L mutation. J Neurol Neurosurg Psychiatry 80:1125–1129. https://doi.org/10.1136/jnnp.2009.177279

    Article  CAS  PubMed  Google Scholar 

  110. Strupp M, Zwergal A, Brandt T (2007) Episodic ataxia type 2. Neurotherapeutics 4:267–273. https://doi.org/10.1016/j.nurt.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  111. Sutton KG, McRory JE, Guthrie H, Murphy TH, Snutch TP (1999) P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 401:800–804. https://doi.org/10.1038/44586

    Article  CAS  PubMed  Google Scholar 

  112. Tantsis EM, Gill D, Griffiths L, Gupta S, Lawson J, Maksemous N, Ouvrier R, Riant F, Smith R, Troedson C, Webster R, Menezes MP (2016) Eye movement disorders are an early manifestation of CACNA1A mutations in children. Dev Med Child Neurol 58:639–644. https://doi.org/10.1111/dmcn.13033

    Article  PubMed  Google Scholar 

  113. Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science 328:67–73. https://doi.org/10.1126/science.1185954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tarr TB, Lacomis D, Reddel SW, Liang M, Valdomir G, Frasso M, Wipf P, Meriney SD (2014) Complete reversal of Lambert-Eaton myasthenic syndrome synaptic impairment by the combined use of a K+ channel blocker and a Ca2+ channel agonist. J Physiol 592:3687–3696. https://doi.org/10.1113/jphysiol.2014.276493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tarr TB, Malick W, Liang M, Valdomir G, Frasso M, Lacomis D, Reddel SW, Garcia-Ocano A, Wipf P, Meriney SD (2013) Evaluation of a novel calcium channel agonist for therapeutic potential in Lambert-Eaton myasthenic syndrome. J Neurosci 33:10559–10567. https://doi.org/10.1523/JNEUROSCI.4629-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Terwindt GM, Ophoff RA, Haan J, Vergouwe MN, van Eijk R, Frants RR, Ferrari MD (1998) Variable clinical expression of mutations in the P/Q-type calcium channel gene in familial hemiplegic migraine. Dutch Migraine Genetics Research Group Neurology 50:1105–1110. https://doi.org/10.1212/wnl.50.4.1105

    Article  CAS  PubMed  Google Scholar 

  117. Tonelli A, D’Angelo MG, Salati R, Villa L, Germinasi C, Frattini T, Meola G, Turconi AC, Bresolin N, Bassi MT (2006) Early onset, non fluctuating spinocerebellar ataxia and a novel missense mutation in CACNA1A gene. J Neurol Sci 241:13–17. https://doi.org/10.1016/j.jns.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  118. Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M, van den Maagdenberg AMJM, Ferrari MD, Pietrobon D (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in CaV2.1 knockin migraine mice. Neuron 61:762–773. https://doi.org/10.1016/j.neuron.2009.01.027

    Article  CAS  PubMed  Google Scholar 

  119. Tottene A, Fellin T, Pagnutti S, Luvisetto S, Striessnig J, Fletcher C, Pietrobon D (2002) Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc Natl Acad Sci U S A 99:13284–13289. https://doi.org/10.1073/pnas.192242399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tottene A, Pivotto F, Fellin T, Cesetti T, van den Maagdenberg AMJM, Pietrobon D (2005) Specific kinetic alterations of human CaV2.1 calcium channels produced by mutation S218L causing familial hemiplegic migraine and delayed cerebral edema and coma after minor head trauma. J Biol Chem 280:17678–17686. https://doi.org/10.1074/jbc.M501110200

    Article  CAS  PubMed  Google Scholar 

  121. Travaglini L, Nardella M, Bellacchio E, D’Amico A, Capuano A, Frusciante R, Di Capua M, Cusmai R, Barresi S, Morlino S, Fernández-Fernández JM, Trivisano M, Specchio N, Valeriani M, Vigevano F, Bertini E, Zanni G (2017) Missense mutations of CACNA1A are a frequent cause of autosomal dominant nonprogressive congenital ataxia. Eur J Paediatr Neurol 21:450–456. https://doi.org/10.1016/j.ejpn.2016.11.005

    Article  PubMed  Google Scholar 

  122. Türkmen S, Guo G, Garshasbi M, Hoffmann K, Alshalah AJ, Mischung C, Kuss A, Humphrey N, Mundlos S, Robinson PN (2009) CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet 5:e1000487. https://doi.org/10.1371/journal.pgen.1000487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tyagi S, Bendrick TR, Filipova D, Papadopoulos S, Bannister RA (2019) A mutation in CaV2.1 linked to a severe neurodevelopmental disorder impairs channel gating. J Gen Physiol 151:850–859. https://doi.org/10.1085/jgp.201812237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vahedi K, Denier C, Ducros A, Bousson V, Levy C, Chabriat H, Haguenau M, Tournier-Lasserve E, Bousser MG (2000) CACNA1A gene de novo mutation causing hemiplegic migraine, coma, and cerebellar atrophy. Neurology 55:1040–1042. https://doi.org/10.1212/WNL.55.7.1040

    Article  CAS  PubMed  Google Scholar 

  125. Valence S, Cochet E, Rougeot C, Garel C, Chantot-Bastaraud S, Lainey E, Afenjar A, Barthez MA, Bednarek N, Doummar D, Faivre L, Goizet C, Haye D, Heron B, Kemlin I, Lacombe D, Milh M, Moutard ML, Riant F, Robin S, Roubertie A, Sarda P, Toutain A, Villard L, Ville D, Billette de Villemeur T, Rodriguez D, Burglen L (2019) Exome sequencing in congenital ataxia identifies two new candidate genes and highlights a pathophysiological link between some congenital ataxias and early infantile epileptic encephalopathies. Genet Med 21:553–563. https://doi.org/10.1038/s41436-018-0089-2

    Article  CAS  PubMed  Google Scholar 

  126. Vecchia D, Tottene A, van den Maagdenberg AMJM, Pietrobon D (2014) Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice. Neurobiol Dis 69:225–234. https://doi.org/10.1016/j.nbd.2014.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vicario M, Calì T, Cieri D, Vallese F, Bortolotto R, Lopreiato R, Zonta F, Nardella M, Micalizzi A, Lefeber DJ, Valente EM, Bertini E, Zanotti G, Zanni G, Brini M, Carafoli E (2017) A novel PMCA3 mutation in an ataxic patient with hypomorphic phosphomannomutase 2 (PMM2) heterozygote mutations: Biochemical characterization of the pump defect. Biochim Biophys Acta Mol basis Dis 1863:3303–3312. https://doi.org/10.1016/j.bbadis.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  128. Vicario M, Zanni G, Vallese F, Santorelli F, Grinzato A, Cieri D, Berto P, Frizzarin M, Lopreiato R, Zonta F, Ferro S, Sandre M, Marin O, Ruzzene M, Bertini E, Zanotti G, Brini M, Calì T, Carafoli E (2018) A V1143F mutation in the neuronal-enriched isoform 2 of the PMCA pump is linked with ataxia. Neurobiol Dis 115:157–166. https://doi.org/10.1016/j.nbd.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  129. Vila-Pueyo M, Gené GG, Flotats-Bastardes M, Elorza X, Sintas C, Valverde MA, Cormand B, Fernández-Fernández JM, Macaya A (2014) A loss-of-function CACNA1A mutation causing benign paroxysmal torticollis of infancy. Eur J Paediatr Neurol 18:430–433. https://doi.org/10.1016/j.ejpn.2013.12.011

    Article  PubMed  Google Scholar 

  130. de Vries B, Stam AH, Beker F, van den Maagdenberg AMJM, Vanmolkot KRJ, Laan L, Ginjaar IB, Frants RR, Lauffer H, Haan J, Haas JP, Terwindt GM, Ferrari MD (2008) CACNA1A mutation linking hemiplegic migraine and alternating hemiplegia of childhood. Cephalalgia 28:887–891. https://doi.org/10.1111/j.1468-2982.2008.01596.x

    Article  PubMed  Google Scholar 

  131. Wada T, Kobayashi N, Takahashi Y, Aoki T, Watanabe T, Saitoh S (2002) Wide clinical variability in a family with a CACNA1A T666M mutation: hemiplegic migraine, coma, and progressive ataxia. Pediatr Neurol 26:47–50. https://doi.org/10.1016/S0887-8994(01)00371-X

    Article  PubMed  Google Scholar 

  132. Walter JT, Alviña K, Womack MD, Chevez C, Khodakhah K (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9:389–397. https://doi.org/10.1038/nn1648

    Article  CAS  PubMed  Google Scholar 

  133. Wan J, Khanna R, Sandusky M, Papazian DM (2005) CACNA1A mutations causing episodic and progressive ataxia alter channel. 05524

  134. Wappl E, Koschak A, Poteser M, Sinnegger MJ, Walter D, Eberhart A, Groschner K, Glossmann H, Kraus RL, Grabner M, Striessnig J (2002) Functional consequences of P/Q-type Ca2+ channel CaV2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J Biol Chem 277:6960–6966. https://doi.org/10.1074/jbc.M110948200

    Article  CAS  PubMed  Google Scholar 

  135. Watase K, Barrett CF, Miyazaki T, Ishiguro T, Ishikawa K, Hu Y, Unno T, Sun Y, Kasai S, Watanabe M, Gomez CM, Mizusawa H, Tsien RW, Zoghbi HY (2008) Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A 105:11987–11992. https://doi.org/10.1073/pnas.0804350105

    Article  PubMed  PubMed Central  Google Scholar 

  136. Weiss N, Sandoval A, Felix R, van den Maagdenberg A, De Waard M (2008) The S218L familial hemiplegic migraine mutation promotes deinhibition of CaV2.1 calcium channels during direct G-protein regulation. Pflugers Arch 457:315–326. https://doi.org/10.1007/s00424-008-0541-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TVB, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J Neurosci 15:6403–6418. https://doi.org/10.1523/jneurosci.15-10-06403.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wisedchaisri G, Tonggu L, McCord E, Gamal El-Din TM, Wang L, Zheng N, Catterall WA (2019) Resting-state structure and gating mechanism of a voltage-gated sodium channel. Cell 178:993–1003.e12. https://doi.org/10.1016/j.cell.2019.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N (2016) Structure of the voltage-gated calcium channel CaV1.1 at 3.6 Å resolution. Nature 537:191–196. https://doi.org/10.1038/nature19321

    Article  CAS  PubMed  Google Scholar 

  140. Wu M, White HV, Boehm BA, Meriney CJ, Kerrigan K, Frasso M, Liang M, Gotway EM, Wilcox MR, Johnson JW, Wipf P, Meriney SD (2018) New CaV2 calcium channel gating modifiers with agonist activity and therapeutic potential to treat neuromuscular disease. Neuropharmacology 131:176–189. https://doi.org/10.1016/j.neuropharm.2017.12.022

    Article  CAS  PubMed  Google Scholar 

  141. Yamazaki S, Ikeno K, Abe T, Tohyama J, Adachi Y (2011) Hemiconvulsion-hemiplegia-epilepsy syndrome associated with CACNA1A S218L mutation. Pediatr Neurol 45:193–196. https://doi.org/10.1016/j.pediatrneurol.2011.04.010

    Article  PubMed  Google Scholar 

  142. Yan Z, Chi P, Bibb JA, Ryan TA, Greengard P (2002) Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J Physiol 540:761–770. https://doi.org/10.1113/jphysiol.2001.013376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zambonin JL, Bellomo A, Ben-Pazi H, Everman DB, Frazer LM, Geraghty MT, Harper AD, Jones JR, Kamien B, Kernohan K, Koenig MK, Lines M, Palmer EE, Richardson R, Segel R, Tarnopolsky M, Vanstone JR, Gibbons M, Collins A, Fogel BL, Care4Rare Canada Consortium, Dudding-Byth T, Boycott KM (2017) Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia. Orphanet J Rare Dis 12:121. https://doi.org/10.1186/s13023-017-0672-7

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zangaladze A, Asadi-Pooya AA, Ashkenazi A, Sperling MR (2010) Sporadic hemiplegic migraine and epilepsy associated with CACNA1A gene mutation. Epilepsy Behav 17:293–295. https://doi.org/10.1016/j.yebeh.2009.12.017

    Article  PubMed  Google Scholar 

  145. Zanni G, Calì T, Kalscheuer VM, Ottolini D, Barresi S, Lebrun N, Montecchi-Palazzi L, Hu H, Chelly J, Bertini E, Brini M, Carafoli E (2012) Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci U S A 109:14514–14519. https://doi.org/10.1073/pnas.1207488109

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhong H, Yokoyama CT, Scheuer T, Catterall WA (1999) Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 2:939–941. https://doi.org/10.1038/14721

    Article  CAS  PubMed  Google Scholar 

  147. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat Genet 15:62–69. https://doi.org/10.1038/ng0197-62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science and Innovation, the State Research Agency (AEI, Agencia Estatal de Investigación), and FEDER Funds (Fondo Europeo de Desarrollo Regional): Grants RTI2018-094809-B-I00 to J.M.F.F. and CEX2018-000792-M through the “María de Maeztu” Programme for Units of Excellence in R&D to “Departament de Ciències Experimentals i de la Salut”. M.S. is supported by the Generalitat de Catalunya (PERIS SLT008/18/00194) and National Grant PI17/00101 from the National R&D&I Plan, cofinanced by the Instituto de Salud Carlos III (Subdirectorate-General for Evaluation and Promotion of Health Research) and European Regional Development Fund. M.I.-S. holds a “Juan de la Cierva-Incorporación” Fellowship funded by the Spanish Ministry of Science and Innovation.

Declarations

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

Not applicable

Code availability

Not applicable

Funding

This work was funded by the Spanish Ministry of Science and Innovation, the State Research Agency (AEI, Agencia Estatal de Investigación), and FEDER Funds (Fondo Europeo de Desarrollo Regional): Grants RTI2018-094809-B-I00 to J.M.F.F., and CEX2018-000792-M through the “María de Maeztu” Programme for Units of Excellence in R&D to “Departament de Ciències Experimentals i de la Salut”. M.S. is supported by the Generalitat de Catalunya (PERIS SLT008/18/00194) and National Grant PI17/00101 from the National R&D&I Plan, cofinanced by the Instituto de Salud Carlos III (Subdirectorate-General for Evaluation and Promotion of Health Research) and European Regional Development Fund. M.I.-S. holds a “Juan de la Cierva-Incorporación” Fellowship funded by the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José M. Fernández-Fernández or Mercedes Serrano.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Channelopathies: from mutation to diseases in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izquierdo-Serra, M., Fernández-Fernández, J.M. & Serrano, M. Rare CACNA1A mutations leading to congenital ataxia. Pflugers Arch - Eur J Physiol 472, 791–809 (2020). https://doi.org/10.1007/s00424-020-02396-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02396-z

Keywords

Navigation