Skip to main content

Advertisement

Log in

Fast relaxation and desensitization of angiotensin II contraction in the pulmonary artery via AT1R and Akt-mediated phosphorylation of muscular eNOS

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Angiotensin II (AngII) triggers a transient contraction of pulmonary arteries (PAs) followed by protracted desensitization. Based on the unconventional eNOS expression in PA smooth muscle cells (PASMCs), we hypothesized that activation of smooth muscle eNOS by AngII might be responsible for fast relaxation and tachyphylaxis. Using dual-wire myograph, mechanically endothelium-denuded rat PA [E(−)PA] showed AngII concentration–dependent transient contractions (ΔTAngII, 95% decay within 1 min), which were abolished by losartan (AT1R antagonist). Neither PD123319 (AT2R antagonist) nor A779 (MasR antagonist) affected ΔTAngII. When the vessels were pretreated with L-NAME (NOS inhibitor), ODQ (guanylate cyclase inhibitor), or KT5823 (PKG inhibitor), ΔTAngII of E(−)PA became larger and sustained, whereas nNOS or iNOS inhibitors had no such effect. Immunoblotting of human PASMCs (hPASMCs) also showed eNOS expression, and AngII treatment induced activating phosphorylations of Ser1177 in eNOS and of Ser473 in Akt (Ser/Thr protein kinase B), an upstream signal of eNOS phosphorylation. In addition, L-NAME co-treatment promoted AngII-induced Ser19 phosphorylation of myosin light chain. In hPASMCs, AngII abolished plasma membrane expression of AT1R, and recovery by washout took more than 1 h. Consistent with the data from hPASMCs, the second application of AngII to E(−)PA did not induce contraction, and significant recovery of ΔTAngII required prolonged washout (> 2 h) in the myography study. L-NAME treatment before the second application facilitated recovery of ΔTAngII. Muscular eNOS plays an auto-inhibitory role in ΔTAngII of PAs. The molecular changes investigated in hPASMCs revealed eNOS phosphorylation and internalization of AT1R by AngII. We propose that the rat PA smooth muscle eNOS-induced lusitropy and slow recovery of AT1R from tachyphylaxis might counterbalance the excessive contractile response to AngII, contributing to the distinctive low-pressure pulmonary circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adnot S, Chabrier PE, Brun-Buisson C, Viossat I, Braquet P (1988) Atrial natriuretic factor attenuates the pulmonary pressor response to hypoxia. J Appl Physiol 65:1975–1983. https://doi.org/10.1152/jappl.1988.65.5.1975

    Article  CAS  PubMed  Google Scholar 

  2. Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385:399–408. https://doi.org/10.1042/bj20041140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bkaily G, Sleiman S, Stephan J, Asselin C, Choufani S, Kamal M, Jacques D, Gobeil F Jr, D’Orleans-Juste P (2003) Angiotensin II AT1 receptor internalization, translocation and de novo synthesis modulate cytosolic and nuclear calcium in human vascular smooth muscle cells. Can J Physiol Pharmacol 81:274–287

    Article  CAS  PubMed  Google Scholar 

  4. Boulanger CM, Heymes C, Benessiano J, Geske RS, Levy BI, Vanhoutte PM (1998) Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res 83:1271–1278

    Article  CAS  PubMed  Google Scholar 

  5. Buchwalow IB, Podzuweit T, Samoilova VE, Wellner M, Haller H, Grote S, Aleth S, Boecker W, Schmitz W, Neumann J (2004) An in situ evidence for autocrine function of NO in the vasculature. Nitric Oxide 10:203–212. https://doi.org/10.1016/j.niox.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  6. Cacanyiova S, Dovinova I, Kristek F (2013) The role of oxidative stress in acetylcholine-induced relaxation of endothelium-denuded arteries. J Physiol Pharmacol 64:241–247

    CAS  PubMed  Google Scholar 

  7. Chand N, Altura BM (1980) Reactivity and contractility of rat main pulmonary artery to vasoactive agents. J Appl Physiol Respir Environ Exerc Physiol 49:1016–1021. https://doi.org/10.1152/jappl.1980.49.6.1016

    Article  CAS  PubMed  Google Scholar 

  8. Cooper CJ, Landzberg MJ, Anderson TJ, Charbonneau F, Creager MA, Ganz P, Selwyn AP (1996) Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation 93:266–271

    Article  CAS  PubMed  Google Scholar 

  9. Costa ED, Rezende BA, Cortes SF, Lemos VS (2016) Neuronal nitric oxide synthase in vascular physiology and diseases. Front Physiol 7:206. https://doi.org/10.3389/fphys.2016.00206

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cui T, Nakagami H, Iwai M, Takeda Y, Shiuchi T, Tamura K, Daviet L, Horiuchi M (2000) ATRAP, novel AT1 receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth. Biochem Biophys Res Commun 279:938–941. https://doi.org/10.1006/bbrc.2000.4055

    Article  CAS  PubMed  Google Scholar 

  11. de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, Francois C, Schalij I, Dorfmuller P, Simonneau G, Fadel E, Perros F, Boonstra A, Postmus PE, van der Velden J, Vonk-Noordegraaf A, Humbert M, Eddahibi S, Guignabert C (2012) Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med 186:780–789. https://doi.org/10.1164/rccm.201203-0411OC

    Article  CAS  PubMed  Google Scholar 

  12. Emery CJ, Bee D, Barer GR (1981) Mechanical properties and reactivity of vessels in isolated perfused lungs of chronically hypoxic rats. Clin Sci (Lond) 61:569–580

    Article  CAS  Google Scholar 

  13. Fasciolo JC, Binia A (1981) Angiotensin I, II, and II tachyphylaxis in the mesenteric vascular circuit of the rat. Hypertension 3:Ii–166 -170

    Article  CAS  PubMed  Google Scholar 

  14. Feng YH, Ding Y, Ren S, Zhou L, Xu C, Karnik SS (2005) Unconventional homologous internalization of the angiotensin II type-1 receptor induced by G-protein-independent signals. Hypertension 46:419–425. https://doi.org/10.1161/01.hyp.0000172621.68061.22

    Article  CAS  PubMed  Google Scholar 

  15. Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459:793–806. https://doi.org/10.1007/s00424-009-0767-7

    Article  CAS  PubMed  Google Scholar 

  16. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 98:1627–1738. https://doi.org/10.1152/physrev.00038.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldenberg NM, Kuebler WM (2015) Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Compr Physiol 5:531–559. https://doi.org/10.1002/cphy.c140024

    Article  PubMed  Google Scholar 

  18. Goll HM, Nyhan DP, Geller HS, Murray PA (1986) Pulmonary vascular responses to angiotensin II and captopril in conscious dogs. J Appl Physiol 61:1552–1559. https://doi.org/10.1152/jappl.1986.61.4.1552

    Article  CAS  PubMed  Google Scholar 

  19. Guo DF, Sun YL, Hamet P, Inagami T (2001) The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res 11:165–180. https://doi.org/10.1038/sj.cr.7290083

    Article  CAS  PubMed  Google Scholar 

  20. Hampl V, Herget J (2000) Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 80:1337–1372. https://doi.org/10.1152/physrev.2000.80.4.1337

    Article  CAS  PubMed  Google Scholar 

  21. Han JA, Seo EY, Kim HJ, Park SJ, Yoo HY, Kim JY, Shin DM, Kim JK, Zhang YH, Kim SJ (2013) Hypoxia-augmented constriction of deep femoral artery mediated by inhibition of eNOS in smooth muscle. Am J Phys Cell Physiol 304:C78–C88. https://doi.org/10.1152/ajpcell.00176.2012

    Article  CAS  Google Scholar 

  22. Hayashi H, Hess DT, Zhang R, Sugi K, Gao H, Tan BL, Bowles DE, Milano CA, Jain MK, Koch WJ, Stamler JS (2018) S-Nitrosylation of beta-arrestins biases receptor signaling and confers ligand independence. Mol Cell 70:473–487.e476. https://doi.org/10.1016/j.molcel.2018.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horiuchi M, Iwanami J, Mogi M (2012) Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond) 123:193–203. https://doi.org/10.1042/cs20110677

    Article  CAS  Google Scholar 

  24. Huang ZM, Gao E, Fonseca FV, Hayashi H, Shang X, Hoffman NE, Chuprun JK, Tian X, Tilley DG, Madesh M, Lefer DJ, Stamler JS, Koch WJ (2013) Convergence of G protein-coupled receptor and S-nitrosylation signaling determines the outcome to cardiac ischemic injury. Sci Signal 6:ra95. https://doi.org/10.1126/scisignal.2004225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hunyady L, Catt KJ (2006) Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 20:953–970. https://doi.org/10.1210/me.2004-0536

    Article  CAS  PubMed  Google Scholar 

  26. Hyman AL, Kadowitz PJ (1988) Tone-dependent responses to acetylcholine in the feline pulmonary vascular bed. J Appl Physiol 64:2002–2009. https://doi.org/10.1152/jappl.1988.64.5.2002

    Article  CAS  PubMed  Google Scholar 

  27. Kawai T, Forrester SJ, O’Brien S, Baggett A, Rizzo V, Eguchi S (2017) AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 125:4–13. https://doi.org/10.1016/j.phrs.2017.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaye AD, Nossaman BD, Ibrahim IN, Feng CJ, Kadowitz PJ (1995) Influence of protein kinase C inhibitors on vasoconstrictor responses in the pulmonary vascular bed of cat and rat. Am J Phys 268:L532–L538. https://doi.org/10.1152/ajplung.1995.268.3.L532

    Article  CAS  Google Scholar 

  29. Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, Lefkowitz RJ (2005) Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 102:1442–1447. https://doi.org/10.1073/pnas.0409532102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim HJ, Yoo HY, Jang JH, Lin HY, Seo EY, Zhang YH, Kim SJ (2016) Wall stretch and thromboxane A(2) activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H2O2 and Akt-dependent phosphorylation. Pflugers Arch 468:705–716. https://doi.org/10.1007/s00424-015-1778-1

    Article  CAS  PubMed  Google Scholar 

  31. Kim HJ, Yoo HY, Lin HY, Oh GT, Zhang YH, Kim SJ (2016) Role of muscular eNOS in skeletal arteries: endothelium-independent hypoxic vasoconstriction of the femoral artery is impaired in eNOS-deficient mice. Am J Phys Cell Physiol 311:C508–C517. https://doi.org/10.1152/ajpcell.00061.2016

    Article  Google Scholar 

  32. Kimura T, Toda N, Noda Y, Okamura T (2001) Mechanisms of relaxation induced by angiotensin II in isolated canine and human uterine arteries. J Cardiovasc Pharmacol 37:585–595

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S, Sud N, Fonseca FV, Hou Y, Black SM (2010) Shear stress stimulates nitric oxide signaling in pulmonary arterial endothelial cells via a reduction in catalase activity: role of protein kinase C delta. Am J Phys Lung Cell Mol Phys 298:L105–L116. https://doi.org/10.1152/ajplung.00290.2009

    Article  CAS  Google Scholar 

  34. Lipworth BJ, Dagg KD (1994) Vasoconstrictor effects of angiotensin II on the pulmonary vascular bed. Chest 105:1360–1364

    Article  CAS  PubMed  Google Scholar 

  35. Logie L, Ruiz-Alcaraz AJ, Keane M, Woods YL, Bain J, Marquez R, Alessi DR, Sutherland C (2007) Characterization of a protein kinase B inhibitor in vitro and in insulin-treated liver cells. Diabetes 56:2218–2227. https://doi.org/10.2337/db07-0343

    Article  CAS  PubMed  Google Scholar 

  36. Lumb AB, Nunn JF (2005) Nunn’s applied respiratory physiology, 6th edn. Elsevier Butterworth Heinemann, Edinburgh

    Google Scholar 

  37. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Phys Cell Physiol 292:C82–C97. https://doi.org/10.1152/ajpcell.00287.2006

    Article  CAS  Google Scholar 

  38. Mogi M, Iwai M, Horiuchi M (2007) Emerging concepts of regulation of angiotensin II receptors: new players and targets for traditional receptors. Arterioscler Thromb Vasc Biol 27:2532–2539. https://doi.org/10.1161/atvbaha.107.144154

    Article  CAS  PubMed  Google Scholar 

  39. Morinelli TA, Walker LP, Velez JC, Ullian ME (2015) Clathrin-dependent internalization of the angiotensin II AT(1)A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells. Eur J Pharmacol 748:143–148. https://doi.org/10.1016/j.ejphar.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  40. Mutchler SM, Straub AC (2015) Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide 49:8–15. https://doi.org/10.1016/j.niox.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nossaman BD, Feng CJ, Wang J, Kadowitz PJ (1994) Analysis of angiotensins I, II, and III in pulmonary vascular bed of the rat. Am J Phys 266:L389–L396. https://doi.org/10.1152/ajplung.1994.266.4.L389

    Article  CAS  Google Scholar 

  42. Park SJ, Yoo HY, Earm YE, Kim SJ, Kim JK, Kim SD (2011) Role of arachidonic acid-derived metabolites in the control of pulmonary arterial pressure and hypoxic pulmonary vasoconstriction in rats. Br J Anaesth 106:31–37. https://doi.org/10.1093/bja/aeq268

    Article  CAS  PubMed  Google Scholar 

  43. Rabinovitch M, Mullen M, Rosenberg HC, Maruyama K, O’Brodovich H, Olley PM (1988) Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rat. Am J Phys 254:H500–H508. https://doi.org/10.1152/ajpheart.1988.254.3.H500

    Article  CAS  Google Scholar 

  44. Rudolph AM, Kurland MD, Auld PA, Paul MH (1959) Effects of vasodilator drugs on normal and serotonin-constricted pulmonary vessels of the dog. Am J Phys 197:617–623. https://doi.org/10.1152/ajplegacy.1959.197.3.617

    Article  CAS  Google Scholar 

  45. Sai Y, Okamura T, Amakata Y, Toda N (1995) Comparison of responses of canine pulmonary artery and vein to angiotensin II, bradykinin and vasopressin. Eur J Pharmacol 282:235–241

    Article  CAS  PubMed  Google Scholar 

  46. Sasamura H, Hein L, Saruta T, Pratt RE (1997) Evidence for internalization of both type 1 angiotensin receptor subtypes (AT1a, AT1b) by a protein kinase C independent mechanism. Hypertens Res 20:295–300

    Article  CAS  PubMed  Google Scholar 

  47. Su KH, Tsai JY, Kou YR, Chiang AN, Hsiao SH, Wu YL, Hou HH, Pan CC, Shyue SK, Lee TS (2009) Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling. Cardiovasc Res 82:468–475. https://doi.org/10.1093/cvr/cvp091

    Article  CAS  PubMed  Google Scholar 

  48. Tamaoki J, Sugimoto F, Tagaya E, Isono K, Chiyotani A, Konno K (1994) Angiotensin II 1 receptor-mediated contraction of pulmonary artery and its modulation by prolylcarboxypeptidase. J Appl Physiol (1985) 76:1439–1444. https://doi.org/10.1152/jappl.1994.76.4.1439

    Article  CAS  Google Scholar 

  49. Tan LM, Sim MK (2000) Actions of angiotensin peptides on the rabbit pulmonary artery. Life Sci 66:1839–1847

    Article  CAS  PubMed  Google Scholar 

  50. Toda N, Ayajiki K, Okamura T (2007) Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev 59:54–87. https://doi.org/10.1124/pr.59.1.2

    Article  CAS  PubMed  Google Scholar 

  51. Uncles DR, Daugherty MO, Frank DU, Roos CM, Rich GF (1996) Nitric oxide modulation of pulmonary vascular resistance is red blood cell dependent in isolated rat lungs. Anesth Analg 83:1212–1217

    Article  CAS  PubMed  Google Scholar 

  52. Wilson PS, Khimenko P, Moore TM, Taylor AE (1996) Perfusate viscosity and hematocrit determine pulmonary vascular responsiveness to NO synthase inhibitors. Am J Phys 270:H1757–H1765. https://doi.org/10.1152/ajpheart.1996.270.5.H1757

    Article  CAS  Google Scholar 

  53. Yeh JL, Whitney EG, Lamb S, Brophy CM (1996) Nitric oxide is an autocrine feedback inhibitor of vascular smooth muscle contraction. Surgery 119:104–109

    Article  CAS  PubMed  Google Scholar 

  54. Yoo HY, Kim SJ (2013) Disappearance of hypoxic pulmonary vasoconstriction and o2-sensitive nonselective cationic current in arterial myocytes of rats under ambient hypoxia. Korean J Physiol Pharmacol 17:463–468. https://doi.org/10.4196/kjpp.2013.17.5.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao Y, Brandish PE, Di Valentin M, Schelvis JP, Babcock GT, Marletta MA (2000) Inhibition of soluble guanylate cyclase by ODQ. Biochemistry. 39:10848–10854

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Y, Vanhoutte PM, Leung SW (2015) Vascular nitric oxide: beyond eNOS. J Pharmacol Sci 129:83–94. https://doi.org/10.1016/j.jphs.2015.09.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the experimental contribution by Mr. Rany Vorn (Chung-Ang University College of Nursing) in the wire myography study.

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2018R1A5A2025964 and NRF-2018R1D1A1B07048998) to S.J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Joon Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Commentary to this article is available online at https://doi.org/10.1007/s00424-019-02308-w

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Jang, J.H., Zhang, Y.H. et al. Fast relaxation and desensitization of angiotensin II contraction in the pulmonary artery via AT1R and Akt-mediated phosphorylation of muscular eNOS. Pflugers Arch - Eur J Physiol 471, 1317–1330 (2019). https://doi.org/10.1007/s00424-019-02305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-019-02305-z

Keywords

Navigation