Skip to main content
Log in

Long-term endurance running activity causes pulmonary changes depending on the receptor for advanced glycation end-products

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The receptor for advanced glycation end-products (RAGE) is an immunoglobulin superfamily cell adhesion molecule predominantly expressed in the lung, but its pulmonary importance is incompletely understood. Since RAGE alters the respiratory mechanics, which is also challenged by endurance running activity, we studied the RAGE-dependent effect of higher running activity on selected lung parameters in a long-term animal model using wild-type (WT) and RAGE knockout (RAGE-KO) mice. Higher long-term running activity of mice was ensured by providing a running wheel for 8 months. Recording the running activity revealed that RAGE-KO mice are more active than WT mice. RAGE-KO caused an increased lung compliance which additionally increased after long-term running activity with minor limitation of the expiratory flow, whereas the respiratory mechanics of WT mice remained constant. Although RAGE-KO mice had a less dense alveolar-capillary barrier for immune cells, higher long-term running activity led only in WT mice to more leukocyte infiltrations in the lung tissue and aggregations of lymphoid cells in the airways. In this regard, WT mice of the activity group were also more sensitive to ventilation-mediated airway damages. In contrast to RAGE-KO mice of the activity group, lungs of WT mice did not show an increase in the cAMP response element-binding protein, a transcription factor regulating many pro-survival genes. Our findings suggest an important role of RAGE in the physical capability due to its effect on the lung compliance as well as RAGE as a mediator of airway damages caused by higher long-term running activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Robaiy S, Weber B, Simm A, Diez C, Rolewska P, Silber RE, Bartling B (2013) The receptor for advanced glycation end-products supports lung tissue biomechanics. Am J Physiol Lung Cell Mol Physiol 305:L491–L500. https://doi.org/10.1152/ajplung.00090.2013

    Article  PubMed  CAS  Google Scholar 

  2. Anderson SD, Kippelen P (2008) Airway injury as a mechanism for exercise-induced bronchoconstriction in elite athletes. J Allergy Clin Immunol 122:225–235. https://doi.org/10.1016/j.jaci.2008.05.001

    Article  PubMed  Google Scholar 

  3. Babb TG, Rodarte JR (2000) Mechanism of reduced maximal expiratory flow with aging. J Appl Physiol 89:505–511. https://doi.org/10.1152/jappl.2000.89.2.505

    Article  PubMed  CAS  Google Scholar 

  4. Bartling B, Hofmann H, Weigle B, Silber R, Simm A (2005) Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis 26:293–301. https://doi.org/10.1093/carcin/bgh333

    Article  PubMed  CAS  Google Scholar 

  5. Bartling B, Al-Robaiy S, Lehnich H, Binder L, Hiebl B, Simm A (2017) Sex-related differences in the wheel-running activity of mice decline with increasing age. Exp Gerontol 87:139–147. https://doi.org/10.1016/j.exger.2016.04.011

    Article  PubMed  Google Scholar 

  6. Bonsignore MR, Morici G, Riccobono L, Insalaco G, Bonanno A, Profita M, Paterno A, Vassalle C, Mirabella A, Vignola AM (2001) Airway inflammation in nonasthmatic amateur runners. Am J Physiol Lung Cell Mol Physiol 281:L668–L676. https://doi.org/10.1152/ajplung.2001.281.3.L668

    Article  PubMed  CAS  Google Scholar 

  7. Bonsignore MR, Morici G, Vignola AM, Riccobono L, Bonanno A, Profita M, Abate P, Scichilone N, Amato G, Bellia V, Bonsignore G (2003) Increased airway inflammatory cells in endurance athletes: what do they mean? Clin Exp Allergy 33:14–21

    Article  PubMed  CAS  Google Scholar 

  8. Butova OA, Masalov SV (2009) Lactate dehydrogenase activity as an index of muscle tissue metabolism in highly trained athletes. Fiziol Cheloveka 35:141–144

    PubMed  CAS  Google Scholar 

  9. Chandratilleke MG, Carson KV, Picot J, Brinn MP, Esterman AJ, Smith BJ (2012) Physical training for asthma. Cochrane Database Syst Rev:CD001116. https://doi.org/10.1002/14651858.CD001116.pub3

  10. Chaunchaiyakul R, Groeller H, Clarke JR, Taylor NA (2004) The impact of aging and habitual physical activity on static respiratory work at rest and during exercise. Am J Physiol Lung Cell Mol Physiol 287:L1098–L1106. https://doi.org/10.1152/ajplung.00399.2003

    Article  PubMed  CAS  Google Scholar 

  11. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner K, Nawroth P (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198:1507–1515. https://doi.org/10.1084/jem.20030800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chimenti L, Morici G, Paterno A, Bonanno A, Siena L, Licciardi A, Veca M, Guccione W, Macaluso F, Bonsignore G, Bonsignore MR (2007) Endurance training damages small airway epithelium in mice. Am J Respir Crit Care Med 175:442–449. https://doi.org/10.1164/rccm.200608-1086OC

    Article  PubMed  Google Scholar 

  13. Chimenti L, Morici G, Paterno A, Santagata R, Bonanno A, Profita M, Riccobono L, Bellia V, Bonsignore MR (2010) Bronchial epithelial damage after a half-marathon in nonasthmatic amateur runners. Am J Physiol Lung Cell Mol Physiol 298:L857–L862. https://doi.org/10.1152/ajplung.00053.2010

    Article  PubMed  CAS  Google Scholar 

  14. Doyle IR, Morton S, Crockett AJ, Barr HA, Davidson KG, Jones MJ, Jones ME, Nicholas TE (2000) Composition of alveolar surfactant changes with training in humans. Respirology 5:211–220. https://doi.org/10.1046/j.1440-1843.2000.00251.x

    Article  PubMed  CAS  Google Scholar 

  15. Englert JM, Kliment CR, Ramsgaard L, Milutinovic PS, Crum L, Tobolewski JM, Oury TD (2011) Paradoxical function for the receptor for advanced glycation end products in mouse models of pulmonary fibrosis. Int J Clin Exp Pathol 4:241–254

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Fehrenbach H, Kasper M, Tsherinig T, Shearman M, Schuh D, Mueller M (1998) Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol 44:1147–1157. https://doi.org/10.1155/2010/917108

    Article  PubMed  CAS  Google Scholar 

  17. Fineschi S, De Cunto G, Facchinetti F, Civelli M, Imbimbo BP, Carnini C, Villetti G, Lunghi B, Stochino S, Gibbons DL, Hayday A, Lungarella G, Cavarra E (2013) RAGE contributes to postnatal pulmonary development and adult lung maintenance program in mice. Am J Respir Cell Mol Biol 48:164–171. https://doi.org/10.1165/rcmb.2012-0111OC

    Article  PubMed  CAS  Google Scholar 

  18. Hallstrand TS (2012) New insights into pathogenesis of exercise-induced bronchoconstriction. Curr Opin Allergy Clin Immunol 12:42–48. https://doi.org/10.1097/ACI.0b013e32834ecc67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054. https://doi.org/10.1016/j.cell.2004.10.032

    Article  PubMed  CAS  Google Scholar 

  20. Janeway CA, Walport M, Travers P (2001) B-cell activation by armed helpher T cells. In: Murphy K (ed) Immunobiology: the immune system in health and disease Garland Science, New York

  21. Jasrotia R, Kanchan A (2013) Exercise-induced asthma (EIA), exercise-induced bronchospasm (EIB), airway hyper-responsiveness (AHR) and exercise-induced bronchial lability (EIBL): are they same? Int J Cur Res Rev 05:89–93

    Google Scholar 

  22. Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16:1211–1227. https://doi.org/10.1016/j.cellsig.2004.05.001

    Article  PubMed  CAS  Google Scholar 

  23. Karjalainen EM, Laitinen A, Sue-Chu M, Altraja A, Bjermer L, Laitinen LA (2000) Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. Am J Respir Crit Care Med 161:2086–2091. https://doi.org/10.1164/ajrccm.161.6.9907025

    Article  PubMed  CAS  Google Scholar 

  24. Kierdorf K, Fritz G (2013) RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol 94:55–68. https://doi.org/10.1189/jlb.1012519

    Article  PubMed  CAS  Google Scholar 

  25. Lai-Fook SJ, Hyatt RE (2000) Effects of age on elastic moduli of human lungs. J Appl Physiol 89:163–168. https://doi.org/10.1152/jappl.2000.89.1.163

    Article  PubMed  CAS  Google Scholar 

  26. Lehnich H, Simm A (2010) Erfassung ungezwungener Bewegungsprofile bei Labormäusen im Dauerversuch. In: Jamal R, Heinze R (eds) Virtuelle Instrumente in der Praxis 2010: Messtechnik, Automatisierung. VDE Verlag GmbH, Berlin, Offenbach, pp. 449–452

  27. Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR (2004) Genetic influence on daily wheel running activity level. Physiol Genomics 19:270–276. https://doi.org/10.1152/physiolgenomics.00125.2004

    Article  PubMed  CAS  Google Scholar 

  28. Luks V, Burkett A, Turner L, Pakhale S (2013) Effect of physical training on airway inflammation in animal models of asthma: a systematic review. BMC Pulm Med 13(24). https://doi.org/10.1186/1471-2466-13-24

  29. Palmer LA, May WJ, deRonde K, Brown-Steinke K, Gaston B, Lewis SJ (2013) Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation. Respir Physiol Neurobiol 185:497–505. https://doi.org/10.1016/j.resp.2012

    Article  PubMed  Google Scholar 

  30. Pantano C, Ather JL, Alcorn JF, Poynter ME, Brown AL, Guala AS, Beuschel SL, Allen GB, Whittaker LA, Bevelander M, Irvin CG, Janssen-Heininger YM (2008) Nuclear factor-kappaB activation in airway epithelium induces inflammation and hyperresponsiveness. Am J Respir Crit Care Med 177:959–969. https://doi.org/10.1164/rccm.200707-1096OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pelleitier M, Montplaisir S (1975) The nude mouse: a model of deficient T-cell function. Methods Achiev Exp Pathol 7:149–166

    PubMed  CAS  Google Scholar 

  32. Queisser MA, Kouri FM, Konigshoff M, Wygrecka M, Schubert U, Eickelberg O, Preissner KT (2008) Loss of RAGE in pulmonary fibrosis: molecular relations to functional changes in pulmonary cell types. Am J Respir Cell Mol Biol 39:337–345. https://doi.org/10.1165/rcmb.2007-0244OC

    Article  PubMed  CAS  Google Scholar 

  33. Ram FS, Robinson SM, Black PN, Picot J (2005) Physical training for asthma. Cochrane Database Syst Rev:CD001116. https://doi.org/10.1002/14651858.CD001116.pub2

  34. Ramsgaard L, Englert JM, Tobolewski J, Tomai L, Fattman CL, Leme AS, Kaynar AM, Shapiro SD, Enghild JJ, Oury TD (2010) The role of the receptor for advanced glycation end-products in a murine model of silicosis. PLoS One 5:e9604. https://doi.org/10.1371/journal.pone.0009604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Reynolds PR, Kasteler SD, Schmitt RE, Hoidal JR (2011) RAGE signals through Ras during tobacco smoke-induced pulmonary inflammation. Am J Respir Cell Mol Biol 2:411–418. https://doi.org/10.1165/rcmb.2010-0231OC

    Article  CAS  Google Scholar 

  36. Reynolds PR, Stogsdill JA, Stogsdill MP, Heimann NB (2011) Up-regulation of receptors for advanced glycation end-products by alveolar epithelium influences cytodifferentiation and causes severe lung hypoplasia. Am J Respir Cell Mol Biol 45:1195–1202. https://doi.org/10.1165/rcmb.2011-0170OC

    Article  PubMed  CAS  Google Scholar 

  37. Rolewska P, Simm A, Silber RE, Bartling B (2013) Reduced expression level of the cAMP response element-binding protein contributes to lung aging. Am J Respir Cell Mol Biol 50:201–211. https://doi.org/10.1165/rcmb.2013-0057OC

    Article  CAS  Google Scholar 

  38. Rudolph D, Tafuri A, Gass P, Hammerling GJ, Arnold B, Schutz G (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 95:4481–4486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rugbjerg M, Iepsen UW, Jorgensen KJ, Lange P (2015) Effectiveness of pulmonary rehabilitation in COPD with mild symptoms: a systematic review with meta-analyses. Int J Chron Obstruct Pulmon Dis 10:791–801. https://doi.org/10.2147/COPD.S78607

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sambamurthy N, Leme AS, Oury TD, Shapiro SD (2015) The receptor for advanced glycation end products (RAGE) contributes to the progression of emphysema in mice. PLoS One 10:e0118979. https://doi.org/10.1371/journal.pone.0118979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schulz H, Johner C, Eder G, Ziesenis A, Reitmeier P, Heyder J, Balling R (2002) Respiratory mechanics in mice: strain and sex specific differences. Acta Physiol Scand 174:367–375. https://doi.org/10.1046/j.1365-201x.2002.00955.x

    Article  PubMed  CAS  Google Scholar 

  43. Sue-Chu M, Karjalainen EM, Altraja A, Laitinen A, Laitinen LA, Naess AB, Larsson L, Bjermer L (1998) Lymphoid aggregates in endobronchial biopsies from young elite cross-country skiers. Am J Respir Crit Care Med 158:597–601. https://doi.org/10.1164/ajrccm.158.2.9711012

    Article  PubMed  CAS  Google Scholar 

  44. Sukkar MB, Ullah MA, Gan WJ, Wark PA, Chung KF, Hughes JM, Armour CL, Phipps S (2012) RAGE: a new frontier in chronic airways disease. Br J Pharmacol 167:1161–1176. https://doi.org/10.1111/j.1476-5381.2012.01984.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. van de Weert-van Leeuwen PB, de Vrankrijker AM, Fentz J, Ciofu O, Wojtaszewski JF, Arets HG, Hulzebos HJ, van der Ent CK, Beekman JM, Johansen HK (2013) Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model. PLoS One 8:e82869. https://doi.org/10.1371/journal.pone.0082869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang Y, Maciejewski BS, Lee N, Silbert O, McKnight NL, Frangos JA, Sanchez-Esteban J (2006) Strain-induced fetal type II epithelial cell differentiation is mediated via cAMP-PKA-dependent signaling pathway. Am J Physiol Lung Cell Mol Physiol 291:L820–L827. https://doi.org/10.1152/ajplung.00068.2006

    Article  PubMed  CAS  Google Scholar 

  47. Yamakawa N, Uchida T, Matthay MA, Makita K (2011) Proteolytic release of the receptor for advanced glycation end products from in vitro and in situ alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 300:L516–L525. https://doi.org/10.1152/ajplung.00118.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102:4459–4464. https://doi.org/10.1073/pnas.0501076102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zong H, Madden A, Ward M, Mooney MH, Elliott CT, Stitt AW (2010) Homodimerization is essential for the receptor for advanced glycation end products (RAGE)-mediated signal transduction. J Biol Chem 285:23137–23146. https://doi.org/10.1074/jbc.M110.133827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Holger Lehnich and Anika Küttner for technical help.

Funding

This project was supported by grants of Deutsche Forschungsgemeinschaft (BA2077/4-1 and 4-2), Wilhelm Roux program at the Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale) (27/15), and state postgraduate scholarship of Saxony-Anhalt (to SW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babett Bartling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Robaiy, S., Kindermann, A., Wodischeck, S. et al. Long-term endurance running activity causes pulmonary changes depending on the receptor for advanced glycation end-products. Pflugers Arch - Eur J Physiol 470, 1543–1553 (2018). https://doi.org/10.1007/s00424-018-2175-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2175-3

Keywords

Navigation