Skip to main content
Log in

Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca2+-dependent Cl secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca2+-gated Cl channels are known to contribute to calcium-dependent Cl secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca2+-dependent Cl secretion, a CFTR deletion model (cftr−/−), and a CF pathology model that overexpresses the epithelial Na+ channel β-subunit (βENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca2+-dependent Cl secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr−/− mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by βENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anagnostopoulou P, Riederer B, Duerr J, Michel S, Binia A, Agrawal R, Liu X, Kalitzki K, Xiao F, Chen M, Schatterny J, Hartmann D, Thum T, Kabesch M, Soleimani M, Seidler U, Mall MA (2012) SLC26A9-mediated chloride secretion prevents mucus obstruction in airway inflammation. J Clin Invest 122:3629–3634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bartoszewski R, Matalon S, Collawn JF (2017) Ion channels of the lung and their role in disease pathogenesis. Am J Phys 313:L859–L872

    Google Scholar 

  3. Benedetto R, Ousingsawat J, Wanitchakool P, Zhang Y, Holtzman MJ, Amaral M, Rock JR, Schreiber R, Kunzelmann K (2017) Epithelial chloride transport by CFTR requires TMEM16A. Sci Rep 7:12397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, Boucher RC, Rubinstein M (2012) A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:937–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Button B, Okada SF, Frederick CB, Thelin WR, Boucher RC (2013) Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci Signal 6:ra46

    PubMed  PubMed Central  Google Scholar 

  6. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJV (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  PubMed  CAS  Google Scholar 

  7. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  8. Clarke LL, Boucher RC (1992) Chloride secretory response to extracellular ATP in human normal and cystic fibrosis nasal epithelia. Am J Phys 263:C348–C356

    Article  CAS  Google Scholar 

  9. Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A, Boucher RC (1994) Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice. Proc Natl Acad Sci U S A 91:479–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dauner K, Lissmann J, Jeridi S, Frings S, Mohrlen F (2012) Expression patterns of anoctamin 1 and anoctamin 2 chloride channels in the mammalian nose. Cell Tiss Res 347:327–341

    Article  CAS  Google Scholar 

  11. Esther CR Jr, Lazaar AL, Bordonali E, Qaqish B, Boucher RC (2011) Elevated airway purines in COPD. Chest 140:954–960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Evans JH, Sanderson MJ (1999) Intracellular calcium oscillations regulate ciliary beat frequency of airway epithelial cells. Cell Calcium 26:103–110

    Article  PubMed  CAS  Google Scholar 

  13. Ferrera L, Caputo A, Galietta LJV (2010) TMEM16A protein: a new identity for Ca2+-dependent Cl- channels. Physiology 25:357–363

    Article  PubMed  CAS  Google Scholar 

  14. Gabriel SE, Makhlina M, Martsen E, Thomas EJ, Lethem MI, Boucher RC (2000) Permeabilization via the P2X7 purinoreceptor reveals the presence of a Ca2+-activated Cl- conductance in the apical membrane of murine tracheal epithelial cells. J Biol Chem 275:35028–35033

    Article  PubMed  CAS  Google Scholar 

  15. Galietta LJ, Pagesy P, Folli C, Caci E, Romio L, Costes B, Nicolis E, Cabrini G, Goossens M, Ravazzolo R, Zegarra-Moran O (2002) IL-4 is a potent modulator of ion transport in the human bronchial epithelium in vitro. J Immunol 168:839–845

    Article  PubMed  CAS  Google Scholar 

  16. Genovese F, Thews M, Mohrlen F, Frings S (2016) Properties of an optogenetic model for olfactory stimulation. J Physiol 594:3501–3516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gentzsch M, Dang H, Dang Y, Garcia-Caballero A, Suchindran H, Boucher RC, Stutts MJ (2010) The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na+ channel. J Biol Chem 285:32227–32232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gianotti A, Ferrera L, Philp AR, Caci E, Zegarra-Moran O, Galietta LJ, Flores CA (2016) Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways. Eur J Pharmacol 781:100–108

    Article  PubMed  CAS  Google Scholar 

  19. Grubb BR, Vick RN, Boucher RC (1994) Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice. Am J Phys 266:C1478–C1483

    Article  CAS  Google Scholar 

  20. Hahn A, Faulhaber J, Srisawang L, Stortz A, Salomon JJ, Mall MA, Frings S, Mohrlen F (2017) Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium. Physiol Rep 5:e13290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Huang T, You Y, Spoor MS, Richer EJ, Kudva VV, Paige RC, Seiler MP, Liebler JM, Zabner J, Plopper CG, Brody SL (2003) Foxj1 is required for apical localization of ezrin in airway epithelial cells. J Cell Sci 116:4935–4945

    Article  PubMed  CAS  Google Scholar 

  22. Johannesson B, Hirtz S, Schatterny J, Schultz C, Mall MA (2012) CFTR regulates early pathogenesis of chronic obstructive lung disease in betaENaC-overexpressing mice. PLoS One 7:e44059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR, Boucher RC (2005) Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell 16:2154–2167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Krueger B, Haerteis S, Yang L, Hartner A, Rauh R, Korbmacher C, Diakov A (2009) Cholesterol depletion of the plasma membrane prevents activation of the epithelial sodium channel (ENaC) by SGK1. Cell Physiol Biochem 24:605–618

    Article  PubMed  CAS  Google Scholar 

  25. Kunzelmann K, Schreiber R, Boucherot A (2001) Mechanisms of the inhibition of epithelial Na(+) channels by CFTR and purinergic stimulation. Kidney Int 60:455–461

    Article  PubMed  CAS  Google Scholar 

  26. Kunzelmann K, Tian Y, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, Wolf L, Schreiber R (2012) Airway epithelial cells—functional links between CFTR and anoctamin dependent Cl(-) secretion. Int J Biochem Cell Biol 44:1897–1900

    Article  PubMed  CAS  Google Scholar 

  27. Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li H, Salomon JJ, Sheppard DN, Mall MA, Galietta LJ (2017) Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Curr Opin Pharmacol 34:91–97

    Article  PubMed  CAS  Google Scholar 

  29. Lin J, Jiang Y, Li L, Liu Y, Tang H, Jiang D (2015) TMEM16A mediates the hypersecretion of mucus induced by Interleukin-13. Exp Cell Res 334:260–269

    Article  PubMed  CAS  Google Scholar 

  30. Lommatzsch M, Cicko S, Muller T, Lucattelli M, Bratke K, Stoll P, Grimm M, Durk T, Zissel G, Ferrari D, Di Virgilio F, Sorichter S, Lungarella G, Virchow JC, Idzko M (2010) Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181:928–934

    Article  PubMed  CAS  Google Scholar 

  31. Mall MA (2008) Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 21:13–24

    Article  PubMed  CAS  Google Scholar 

  32. Mall MA, Galietta LJ (2015) Targeting ion channels in cystic fibrosis. J Cyst Fibros 14:561–570

    Article  PubMed  CAS  Google Scholar 

  33. Mall M, Bleich M, Greger R, Schreiber R, Kunzelmann K (1998) The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. J Clin Invest 102:15–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mall M, Wissner A, Gonska T, Calenborn D, Kuehr J, Brandis M, Kunzelmann K (2000) Inhibition of amiloride-sensitive epithelial Na(+) absorption by extracellular nucleotides in human normal and cystic fibrosis airways. Am J Respir Cell Mol Biol 23:755–761

    Article  PubMed  CAS  Google Scholar 

  35. Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493

    Article  PubMed  CAS  Google Scholar 

  36. Mall MA, Harkema JR, Trojanek JB, Treis D, Livraghi A, Schubert S, Zhou Z, Kreda SM, Tilley SL, Hudson EJ, O’Neal WK, Boucher RC (2008) Development of chronic bronchitis and emphysema in beta-epithelial Na+ channel-overexpressing mice. Am J Resp Crit Care Med 177:730–742

    Article  PubMed  CAS  Google Scholar 

  37. Mall MA, Button B, Johannesson B, Zhou Z, Livraghi A, Caldwell RA, Schubert SC, Schultz C, O’Neal WK, Pradervand S, Hummler E, Rossier BC, Grubb BR, Boucher RC (2010) Airway surface liquid volume regulation determines different airway phenotypes in liddle compared with betaENaC-overexpressing mice. J Biol Chem 285:26945–26955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Marino A, Rodrig Y, Metioui M, Lagneaux L, Alzola E, Fernandez M, Fogarty DJ, Matute C, Moran A, Dehaye JP (1999) Regulation by P2 agonists of the intracellular calcium concentration in epithelial cells freshly isolated from rat trachea. Biochim Biophys Acta 1439:395–405

    Article  PubMed  CAS  Google Scholar 

  39. Okada SF, Nicholas RA, Kreda SM, Lazarowski ER, Boucher RC (2006) Physiological regulation of ATP release at the apical surface of human airway epithelia. J Biol Chem 281:22992–23002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Okada SF, Ribeiro CM, Sesma JI, Seminario-Vidal L, Abdullah LH, van Heusden C, Lazarowski ER, Boucher RC (2013) Inflammation promotes airway epithelial ATP release via calcium-dependent vesicular pathways. Am J Respir Cell Mol Biol 49:814–820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K (2009) Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J Biol Chem 284:28698–28703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ousingsawat J, Kongsuphol P, Schreiber R, Kunzelmann K (2011) CFTR and TMEM16A are separate but functionally related Cl- channels. Cell Physiol Biochem 28:715–724

    Article  PubMed  CAS  Google Scholar 

  43. Paisley D, Gosling M, Danahay H (2010) Regulation of airway mucosal hydration. Expert Rev Clin Pharmacol 3:361–369

    Article  PubMed  CAS  Google Scholar 

  44. Pedemonte N, Galietta LJ (2014) Structure and function of TMEM16 proteins (anoctamins). Physiol Rev 94:419–459

    Article  PubMed  CAS  Google Scholar 

  45. Perez-Cornejo P, Gokhale A, Duran C, Cui Y, Xiao Q, Hartzell HC, Faundez V (2012) Anoctamin 1 (Tmem16A) Ca2+-activated chloride channel stoichiometrically interacts with an ezrin-radixin-moesin network. Proc Natl Acad Sci U S A 109:10376–10381

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Qin Y, Jiang Y, Sheikh AS, Shen S, Liu J, Jiang D (2016) Interleukin-13 stimulates MUC5AC expression via a STAT6-TMEM16A-ERK1/2 pathway in human airway epithelial cells. Int Immunopharmacol 40:106–114

    Article  PubMed  CAS  Google Scholar 

  48. Rock JR, O'Neal WK, Gabriel SE, Randell SH, Harfe BD, Boucher RC, Grubb BR (2009) Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl- secretory channel in mouse airways. J Biol Chem 284:14875–14880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rokicki W, Rokicki M, Wojtacha J, Dzeljijli A (2016) The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases. Kardiochir Torakochirurgia Pol 13:26–30

    PubMed  PubMed Central  Google Scholar 

  50. Ruffin M, Voland M, Marie S, Bonora M, Blanchard E, Blouquit-Laye S, Naline E, Puyo P, Le Rouzic P, Guillot L, Corvol H, Clement A, Tabary O (2013) Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis. Biochim Biophys Acta 1832:2340–2351

    Article  PubMed  CAS  Google Scholar 

  51. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Scudieri P, Caci E, Bruno S, Ferrera L, Schiavon M, Sondo E, Tomati V, Gianotti A, Zegarra-Moran O, Pedemonte N, Rea F, Ravazzolo R, Galietta LJ (2012) Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J Physiol 590:6141–6155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–19801

    Article  PubMed  CAS  Google Scholar 

  54. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH (1992) An animal model for cystic fibrosis made by gene targeting. Science 257:1083–1088

    Article  PubMed  CAS  Google Scholar 

  55. Sondo E, Caci E, Galietta LJ (2014) The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis. Int J Biochem Cell Biol 52:73–76

    Article  PubMed  CAS  Google Scholar 

  56. Tarran R, Boucher RC (2002) Thin-film measurements of airway surface liquid volume/composition and mucus transport rates in vitro. Meth Mol Med 70:479–492

    CAS  Google Scholar 

  57. Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredberg JJ, Boucher RC (2005) Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Thomas EJ, Gabriel SE, Makhlina M, Hardy SP, Lethem MI (2000) Expression of nucleotide-regulated Cl(-) currents in CF and normal mouse tracheal epithelial cell lines. Am J Phys 279:C1578–C1586

    Article  CAS  Google Scholar 

  59. Veit G, Bossard F, Goepp J, Verkman AS, Galietta LJ, Hanrahan JW, Lukacs GL (2012) Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol Biol Cell 23:4188–4202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Warren NJ, Tawhai MH, Crampin EJ (2010) The effect of intracellular calcium oscillations on fluid secretion in airway epithelium. J Theor Biol 265:270–277

    Article  PubMed  CAS  Google Scholar 

  61. Wei L, Vankeerberghen A, Cuppens H, Eggermont J, Cassiman JJ, Droogmans G, Nilius B (1999) Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator. Pflugers Arch Eur J Physiol 438:635–641

    Article  CAS  Google Scholar 

  62. Wei L, Vankeerberghen A, Cuppens H, Cassiman JJ, Droogmans G, Nilius B (2001) The C-terminal part of the R-domain, but not the PDZ binding motif, of CFTR is involved in interaction with Ca(2+)-activated Cl- channels. Pflug Arch: Eur J Physiol 442:280–285

  63. Xu Z, Gupta V, Lei D, Holmes A, Carlson E, Gruenert DC (1998) In-frame elimination of exon 10 in Cftrtm1Unc CF mice. Gene 211:117–123

    Article  PubMed  CAS  Google Scholar 

  64. Yang YD, Cho HW, Koo JY, Tak MH, Cho YY, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

  65. Zhou L, Dey CR, Wert SE, DuVall MD, Frizzell RA, Whitsett JA (1994) Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science 266:1705–1708

    Article  PubMed  CAS  Google Scholar 

  66. Zhou Z, Duerr J, Johannesson B, Schubert SC, Treis D, Harm M, Graeber SY, Dalpke A, Schultz C, Mall MA (2011) The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J Cyst Fibros 10(Suppl 2):S172–S182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Alexei Diakov for kindly providing the βENaC antibody.

Funding

This project was supported through a grant to AH by the Studienstiftung des deutschen Volkes and in part by the German Ministry for Education and Research (82DZL00401, 82DZL0040A1) to MAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Frings.

Ethics declarations

All experiments were approved by the Regierungspräsidium Karlsruhe and were conducted in agreement with national and international guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, A., Salomon, J.J., Leitz, D. et al. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research. Pflugers Arch - Eur J Physiol 470, 1335–1348 (2018). https://doi.org/10.1007/s00424-018-2160-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2160-x

Keywords

Navigation