Skip to main content
Log in

Alpha2-adrenoceptors in adrenomedullary chromaffin cells: functional role and pathophysiological implications

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Chromaffin cells from the adrenal medulla participate in stress responses by releasing catecholamines into the bloodstream. Main control of adrenal catecholamine secretion is exerted both neurally (by the splanchnic nerve fibers) and humorally (by corticosteroids, circulating noradrenaline, etc.). It should be noted, however, that secretory products themselves (catecholamines, ATP, opioids, ascorbic acid, chromogranins) could also influence the secretory response in an autocrine/paracrine manner. This form of control is activity-dependent and can be either inhibitory or excitatory. Among the inhibitory influences, it stands out the one mediated by α2-adrenergic autoreceptors activated by released catecholamines. α2-adrenoceptors are G protein-coupled receptors capable to inhibit exocytotic secretion through a direct interaction of Gβγ subunits with voltage-gated Ca2+ channels. Interestingly, upon intense and/or prolonged stimulation, α2-adrenergic receptors become desensitized by the intervention of G protein-coupled receptor kinase 2 (GRK2). In several experimental models of heart failure, there has been reported the up-regulation of GRK2 and the loss of functioning of inhibitory α2-adrenoceptors resulting in enhanced release of adrenomedullary catecholamines. Given the importance of circulating catecholamines in the pathophysiology of heart failure, the recovery of α2-adrenergic modulation of the secretory response from chromaffin cells appears as a novel strategy for a better control of the patients with this cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldelli P, Hernández-Guijo JM, Carabelli V, Novara M, Cesetti T, Andrés-Mateos E, Montiel C, Carbone E (2004) Direct and remote modulation of L-channels in chromaffin cells: distinct actions on alpha1C and alpha1D subunits? Mol Neurobiol 29:73–96

    Article  CAS  PubMed  Google Scholar 

  2. Berkowitz DE, Price DT, Bello EA, Page SO, Schwinn DA (1994) Localization of messenger RNA for three distinct alpha 2-adrenergic receptor subtypes in human tissues Evidence for species heterogeneity and implications for human pharmacology. Anesthesiology 81:1235–1244

    Article  CAS  PubMed  Google Scholar 

  3. Bousquet P, Feldman J, Tibirica E, Bricca G, Greney H, Dontenwill M, Stutzmann J, Belcourt A (1992) Imidazoline receptors: a new concept in central regulation of the arterial blood pressure. Am J Hypertens 5:47S–50S

    Article  CAS  PubMed  Google Scholar 

  4. Brede M, Nagy G, Philipp M, Sorensen JB, Lohse MJ, Hein L (2003) Differential control of adrenal and sympathetic catecholamine release by α2-adrenoceptor subtypes. Mol Endocrinol 17:1640–1646

    Article  CAS  PubMed  Google Scholar 

  5. Brünemann M, Bücheler MM, Philipp M, Lohse MJ, Hein L (2001) Activation and deactivation kinetics of α2A- and α2C-adrenergic receptor-activated G protein-activated inwardly rectifying K+ channel currents. J Biol Chem 8:47512–47517

    Article  Google Scholar 

  6. Cavadas C, Grand D, Mosimann F, Cotrim MD, Fontes Ribeiro CA, Brunner HR, Grouzmann E (2003) Angiotensin II mediates catecholamine and neuropeptide Y secretion in human adrenal chromaffin cells through the AT1 receptor. Regul Pept 111:61–65

    Article  CAS  PubMed  Google Scholar 

  7. Cesetti T, Hernández-Guijo JM, Baldelli P, Carabelli V, Carbone E (2003) Opposite action of beta1- and beta2-adrenergic receptors on Ca(V)1 L-channel current in rat adrenal chromaffin cells. J Neurosci 23:73–83

    CAS  PubMed  Google Scholar 

  8. Chabot-Doré A-J, Millecamps M, Naso L, Devost D, Trieu P, Piltonen M, Diatchenko L, Fairbanks CA, Wilcox GL, Hébert TE, Stone LS (2015) Dual allosteric modulation of opioid antinociceptive potency by α2A-adrenoceptors. Neuropharmacology 99:285–300

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colomer C, Olivos-Ore LA, Vincent A, McIntosh JM, Artalejo AR, Guerineau NC (2010) Functional characterization of alpha9-containing cholinergic nicotinic receptors in the rat adrenal medulla: implication in stress-induced functional plasticity. J Neurosci 30:6732–6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Desarménien MG, Jourdan C, Toutain B, Vessières E, Hormuzdi SG, Guérineau NC (2013) Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo. Nat Commun 4:2938

    Article  PubMed  Google Scholar 

  11. Flatmark T (2000) Catecholamine biosynthesis and physiological regulation in neuroendocrine cells. Acta Physiol Scand 168:1–17

    Article  CAS  PubMed  Google Scholar 

  12. Foucart S, de Champlain J, Nadeau R (1991) Modulation by beta-adrenoceptors and angiotensin II receptors of splanchnic nerve evoked catecholamine release from the adrenal medulla. Can J Physiol Pharmacol 69:1–7

    Article  CAS  PubMed  Google Scholar 

  13. Flugge G, van Kampen M, Meyer H, Fuchs E (2003) Alpha2A and alpha2C-adrenoceptor regulation in the brain: alpha2A changes persist after chronic stress. Eur J Neurosci 17:917–928

    Article  CAS  PubMed  Google Scholar 

  14. Gilsbach R, Brede M, Beetz N, Moura E, Muthig V, Gerstner C, Barreto F, Neubauer S, Vieira-Coelho MA, Hein L (2007) Heterozygous α2C-adrenoceptor-deficient mice develop heart failure after transverse aortic constriction. Cardiovasc Res 75:728–737

    Article  CAS  PubMed  Google Scholar 

  15. Gilsbach R, Röser C, Beetz N, Brede M, Hadamek K, Haubold M, Leemhuis J, Philipp M, Schneider J, Urbanski M, Szabo B, Weinshenker D, Hein H (2009) Genetic dissection of α2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol Pharmacol 75:1160–1170

    Article  CAS  PubMed  Google Scholar 

  16. Gilsbach R, Hein L (2011) Are the pharmacology and physiology of α2-adrenoceptors determined by α2-heteroreceptors and autoreceptors respectively? Br J Pharmacol 165:90–102

    Article  Google Scholar 

  17. Goldsmith SR (2004) Interactions between the sympathetic nervous system and the RAAS in heart failure. Curr Heart Fail Rep 1:45–50

    Article  PubMed  Google Scholar 

  18. Goldstein DS (2013) Concepts of scientific integrative medicine applied to the physiology and pathophysiology of catecholamine systems. Compr Physiol 3:1569–1610

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guérineau NC, Desarménien MG, Carabelli V, Carbone E (2012) Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels. J Mol Neurosci 48:368–386

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402:181–184

    Article  CAS  PubMed  Google Scholar 

  21. Hernández-Guijo JM, Carabelli V, Gandía L, García AG, Carbone E (1999) Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. Eur J Neurosci 11:3574–3584

    Article  PubMed  Google Scholar 

  22. Hoefke W, Kobinger W (1966) Pharmacological effects of 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride, a new, antihypertensive substance. Arzneimittelforschung 16:1038–1050

    CAS  PubMed  Google Scholar 

  23. Jafferjee M, Reyes Valero T, Marrero C, McCrink KA, Brill A, Lymperopoulos A (2016) GRK2 up-regulation creates a positive feedback loop for catecholamine production in chromaffin cells. Mol Endocrinol 30:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kenakin T (2017) Signaling bias in drug discovery. Expert Opin Drug Discov 12:321–333

    Article  CAS  PubMed  Google Scholar 

  25. Kleppisch T, Ahnert-Hilger G, Gollasch M, Spicher K, Hescheler J, Schultz G, Rosenthal W (1992) Inhibition of voltage-dependent Ca2+ channels via alpha 2-adrenergic and opioid receptors in cultured bovine adrenal chromaffin cells. Pflugers Arch 421:131–137

    Article  CAS  PubMed  Google Scholar 

  26. Lee CS, Tkacs NC (2008) Current concepts of neurohormonal activation in heart failure: mediators and mechanisms. AACN Adv Crit Care 19:364–385

    PubMed  Google Scholar 

  27. Lymperopoulos A, Rengo G, Funakoshi H, Eckhart AD, Koch WJ (2007a) Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 13:315–323

    Article  CAS  PubMed  Google Scholar 

  28. Lymperopoulos A, Rengo G, Koch WJ (2007b) Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 13:503–511

    Article  CAS  PubMed  Google Scholar 

  29. Lymperopoulos A, Rengo G, Zincarelli C, Soltys S, Koch WJ (2008) Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther 16:302–307

    Article  CAS  PubMed  Google Scholar 

  30. Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW, Koch WJ (2010) Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 285:16378–16386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, Silvestri C, Leosco D, Ferrara N, Rengo G (2014) Adrenal adrenoceptors in heart failure. Front Physiol 5:246

    Article  PubMed  PubMed Central  Google Scholar 

  32. Morrison SF, Cao WH (2000) Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol 279:R1763–R1775

    Article  CAS  PubMed  Google Scholar 

  33. Moura E, Afonso J, Hein L, Vieira-Coelho MA (2006) α2-adrenoceptor subtypes involved in the regulation of catecholamine release from the adrenal medulla of mice. Br J Pharmacol 149:1049–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moura E, Afonso J, Serrão MP, Vieira-Coelho MA (2009) Effect of clonidine on tyrosine hydroxylase activity in the adrenal medulla and brain of spontaneously hypertensive rats. Basic Clin Pharmacol Toxicol 104:113–121

    Article  CAS  PubMed  Google Scholar 

  35. Moura E, Pinto CE, Serrão MP, Afonso J, Vieira-Coelho MA (2012) Adrenal α2-adrenergic receptors in the aging normotensive and spontaneously hypertensive rat. Neurobiol Aging 33:969–978

    Article  CAS  PubMed  Google Scholar 

  36. Orts A, Orellana C, Cantó T, Ceña V, González-García C, García AG (1987) Inhibition of adrenomedullary catecholamine release by propranolol isomers and clonidine involving mechanisms unrelated to adrenoceptors. Br J Pharmacol 92:795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pacak K, Palkovits M, Yadid G, Kvetnansky R, Kopin IJ, Goldstein DS (1998) Heterogeneous neurochemical responses to different stressors: a test of Selye’s doctrine of nonspecificity. Am J Phys 275:R1247–R1255

    Article  CAS  Google Scholar 

  38. Phillips JK, Dubey R, Sesiashvilvi E, Takeda M, Christie DL, Lipski J (2001) Differential expression of the noradrenaline transporter in adrenergic chromaffin cells, ganglion cells and nerve fibres of the rat adrenal medulla. J Chem Neuroanat 21:95–104

    Article  CAS  PubMed  Google Scholar 

  39. Piao L, Fang YH, Parikh KS, Ryan JJ, D'souza KM, Theccanat T, Toth PT, Pogoriler J, Paul J, Blaxall BC, Akhter SA, Archer SL (2012) GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation 126:2859–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail 18:891–975

    Article  PubMed  Google Scholar 

  41. Powis DA, Baker PF (1986) Alpha2-adrenoceptors do not regulate catecholamine secretion by bovine adrenal medullary cells: a study with clonidine. Mol Pharmacol 29:134–141

    CAS  PubMed  Google Scholar 

  42. Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17:159–165

    Article  CAS  PubMed  Google Scholar 

  43. Rengo G, Lymperopoulos A, Zincarelli C et al (2012) Blockade of beta-adrenoceptors restores the GRK2-mediated adrenal alpha(2)-adrenoceptor-catecholamine production axis in heart failure. Br J Pharmacol 166:2430–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sabban EL, Kvetnanský R (2001) Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci 24:91–98

    Article  CAS  PubMed  Google Scholar 

  45. Sala F, Nistri A, Criado M (2008) Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol (Oxf) 192:203–212

    Article  CAS  Google Scholar 

  46. Santos WC, Hernández-Guijo JM, Ruiz-Nuño A, Olivares R, Jurkiewicz A, Gandía L, García AG (2001) Blockade by agmatine of catecholamine release from chromaffin cells is unrelated to imidazoline receptors. Eur J Pharmacol 417:99–109

    Article  CAS  PubMed  Google Scholar 

  47. Selye H (1946) The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab 6:117–230

    Article  CAS  PubMed  Google Scholar 

  48. Schneider J, Lother A, Hein L, Gilsbach R (2011) Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis. Basic Res Cardiol 106:591–602

    Article  CAS  PubMed  Google Scholar 

  49. Starke K (2001) Presynaptic autoreceptors in the third decade: focus on α2- adrenoceptors. J Neurochem 78:685–693

    Article  CAS  PubMed  Google Scholar 

  50. Stroth N, Kuri BA, Mustafa T, Chan SA, Smith CB, Eiden LE (2013) PACAP controls adrenomedullary catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve firing rates characteristic of stress transduction in male mice. Endocrinology 154:330–339

    Article  CAS  PubMed  Google Scholar 

  51. Swedberg K, Bristow MR, Cohn et al (2002) Effects of sustained-release moxonidine, an imidazoline agonist, on plasma norepinephrine in patients with chronic heart failure. Circulation 105:1797–1803

    Article  CAS  PubMed  Google Scholar 

  52. Tai TC, Claycomb R, Siddall BJ, Bell RA, Kvetnansky R, Wong DL (2007) Stress-induced changes in epinephrine expression in the adrenal medulla in vivo. J Neurochem 101:1108–1118

    Article  CAS  PubMed  Google Scholar 

  53. Takeda M, Phillips JK, Dubey R, Polson JW, Lipski J (2001) Modulation of ACh-induced currents in rat adrenal chromaffin cells by ligands of alpha2 adrenergic and imidazoline receptors. Auton Neurosci 88:151–159

    Article  CAS  PubMed  Google Scholar 

  54. Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003) All three α2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn Schmiedeberg's Arch Pharmacol 368:504–512

    Article  CAS  Google Scholar 

  55. Wang H, Regunathan S, Meeley MP, Reis DJ (1992) Isolation and characterization of imidazoline receptor protein from bovine adrenal chromaffin cells. Mol Pharmacol 42:792–801

    CAS  PubMed  Google Scholar 

  56. Westfall TC, Westfall DP (2011) Adrenergic agonists and antagonists. In: Brunton L, Chabner B, Knollman B (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw Hill, New York, pp 276–333

    Google Scholar 

  57. Woo AY, Song Y, Xiao RP, Zhu W (2015) Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. Br J Pharmacol 172:5444–5456

    Article  CAS  PubMed  Google Scholar 

  58. Zhou R, Luo G, Ewing AG (1994) Direct observation of the effect of autoreceptors on stimulated release of catecholamines from adrenal cells. J Neurosci 14:2402–2407

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Antonio G. García for his teaching, mentorship, and continuous support over more than 30 years.

Funding information

Funding from the Spanish Government (grant Ref. No. BFU2011-26253; BFU2015-70067-REDC) and Comunidad de Madrid (BRADE-CM S2013/ICE-2958) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio R. Artalejo.

Additional information

This article is part of the special issue on Chromaffin Cells in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artalejo, A.R., Olivos-Oré, L.A. Alpha2-adrenoceptors in adrenomedullary chromaffin cells: functional role and pathophysiological implications. Pflugers Arch - Eur J Physiol 470, 61–66 (2018). https://doi.org/10.1007/s00424-017-2059-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2059-y

Keywords

Navigation