Skip to main content

Advertisement

Log in

Effects of training status on PDH regulation in human skeletal muscle during exercise

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Pyruvate dehydrogenase (PDH) is the gateway enzyme for carbohydrate-derived pyruvate feeding into the TCA cycle. PDH may play a central role in regulating substrate shifts during exercise, but the influence of training state on PDH regulation during exercise is not fully elucidated. The purpose of this study was to investigate the impact of training state on post-translational regulation of PDHa activity during submaximal and exhaustive exercise. Eight untrained and nine endurance exercise-trained healthy male subjects performed incremental exercise on a cycle ergometer: 40 min at 50% incremental peak power output (IPPO), 10 min at 65% (IPPO), followed by 80% (IPPO) until exhaustion. Trained subjects had higher (P < 0.05) PDH-E1α, PDK1, PDK2, PDK4, and PDP1 protein content as well as PDH phosphorylation and PDH acetylation. Exercising at the same relative intensity led to similar muscle PDH activation in untrained and trained subjects, whereas PDHa activity at exhaustion was higher (P < 0.05) in trained than untrained. Furthermore, exercise induced similar PDH dephosphorylation in untrained and trained subjects, while PDH acetylation was increased (P < 0.05) only in trained subjects. In conclusion, PDHa activity and PDH dephosphorylation were well adjusted to the relative exercise intensity during submaximal exercise. In addition, higher PDHa activity in trained than untrained at exhaustion seemed related to differences in glycogen utilization rather than differences in PDH phosphorylation and acetylation state, although site-specific contributions cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bergmeyer HU, Moellering H (1965) Acylphosphate: D-glucose-6-phosphotransferase. Biochem Z 343:97–102

    CAS  PubMed  Google Scholar 

  2. Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616

    Article  CAS  PubMed  Google Scholar 

  3. Bienso RS, Knudsen JG, Brandt N, Pedersen PA, Pilegaard H (2014) Effects of IL-6 on pyruvate dehydrogenase regulation in mouse skeletal muscle. Pflugers Arch 466:1647–1657

    Article  PubMed  Google Scholar 

  4. Bienso RS, Olesen J, Gliemann L, Schmidt JF, Matzen MS, Wojtaszewski JF, Hellsten Y, Pilegaard H (2015) Effects of exercise training on regulation of skeletal muscle glucose metabolism in elderly men. J Gerontol A Biol Sci Med Sci 70:866–872

    Article  PubMed  Google Scholar 

  5. Bienso RS, Olesen J, van Hauen L, Meinertz S, Halling JF, Gliemann L, Plomgaard P, Pilegaard H (2015) Exercise-induced AMPK and pyruvate dehydrogenase regulation is maintained during short-term low-grade inflammation. Pflugers Arch 467:341–350

    Article  PubMed  Google Scholar 

  6. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329(Pt 1):191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brandauer J, Andersen MA, Kellezi H, Risis S, Frosig C, Vienberg SG, Treebak JT (2015) AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160

    Article  CAS  PubMed  Google Scholar 

  9. Cederblad G, Carlin JI, Constantin-Teodosiu D, Harper P, Hultman E (1990) Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle. Anal Biochem 185:274–278

    Article  CAS  PubMed  Google Scholar 

  10. Christensen EH, Hansen O (1939) Arbeitsfähigkeit und Ernährung. Skandinavisches Arch Physiol 81:160–171. doi:10.1111/j.1748-1716.1939.tb01320.x

    Article  Google Scholar 

  11. Consitt LA, Saxena G, Saneda A, Houmard JA (2016) Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. Am J Physiol Endocrinol Metab 311:E145–E156

    Article  PubMed  PubMed Central  Google Scholar 

  12. Constantin-Teodosiu D, Carlin JI, Cederblad G, Harris RC, Hultman E (1991) Acetyl group accumulation and pyruvate dehydrogenase activity in human muscle during incremental exercise. Acta Physiol Scand 143:367–372

    Article  CAS  PubMed  Google Scholar 

  13. Constantin-Teodosiu D, Cederblad G, Hultman E (1991) A sensitive radioisotopic assay of pyruvate dehydrogenase complex in human muscle tissue. Anal Biochem 198:347–351

    Article  CAS  PubMed  Google Scholar 

  14. Evans WJ, Phinney SD, Young VR (1982) Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc 14:101–102

    CAS  PubMed  Google Scholar 

  15. Fan J, Shan C, Kang HB, Elf S, Xie J, Tucker M, Gu TL, Aguiar M, Lonning S, Chen H, Mohammadi M, Britton LM, Garcia BA, Aleckovic M, Kang Y, Kaluz S, Devi N, Van Meir EG, Hitosugi T, Seo JH, Lonial S, Gaddh M, Arellano M, Khoury HJ, Khuri FR, Boggon TJ, Kang S, Chen J (2014) Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell 53:534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fischer CP, Plomgaard P, Hansen AK, Pilegaard H, Saltin B, Pedersen BK (2004) Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab 287:E1189–E1194

    Article  CAS  PubMed  Google Scholar 

  17. Gibala MJ, MacLean DA, Graham TE, Saltin B (1998) Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am J Phys 275:E235–E242

    CAS  Google Scholar 

  18. Graham TE, Saltin B (1989) Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J Appl Physiol 66:561–566

    CAS  PubMed  Google Scholar 

  19. Green HJ, Jones S, Ball-Burnett ME, Smith D, Livesey J, Farrance BW (1991) Early muscular and metabolic adaptations to prolonged exercise training in humans. J Appl Physiol 70:2032–2038

    CAS  PubMed  Google Scholar 

  20. Guan KL, Xiong Y (2011) Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36:108–116

    Article  CAS  PubMed  Google Scholar 

  21. Gudiksen A, Schwartz CL, Bertholdt L, Joensen E, Knudsen JG, Pilegaard H (2016) Lack of skeletal muscle IL-6 affects pyruvate dehydrogenase activity at rest and during prolonged exercise. PLoS One 11:e0156460

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harris RA, Bowker-Kinley MM, Huang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzym Regul 42:249–259

    Article  CAS  Google Scholar 

  23. Henriksson J (1977) Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol 270:661–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71:129–139

    Article  CAS  PubMed  Google Scholar 

  25. Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    CAS  PubMed  Google Scholar 

  26. Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291

    Article  CAS  PubMed  Google Scholar 

  27. Howlett RA, Parolin ML, Dyck DJ, Hultman E, Jones NL, Heigenhauser GJ, Spriet LL (1998) Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Phys 275:R418–R425

    CAS  Google Scholar 

  28. Jansson E, Kaijser L (1987) Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol 62:999–1005

    CAS  PubMed  Google Scholar 

  29. Jing E, O'Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S, Bain JR, Lee KY, Verdin EM, Newgard CB, Gibson BW, Kahn CR (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62:3404–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelley DE (2005) Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest 115:1699–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49:677–683

    Article  CAS  PubMed  Google Scholar 

  32. Kelly M, Keller C, Avilucea PR, Keller P, Luo Z, Xiang X, Giralt M, Hidalgo J, Saha AK, Pedersen BK, Ruderman NB (2004) AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun 320:449–454

    Article  CAS  PubMed  Google Scholar 

  33. Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol 469:459–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiilerich K, Adser H, Jakobsen AH, Pedersen PA, Hardie DG, Wojtaszewski JF, Pilegaard H (2010) PGC-1alpha increases PDH content but does not change acute PDH regulation in mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 299:R1350–R1359

    Article  CAS  PubMed  Google Scholar 

  35. Kiilerich K, Birk JB, Damsgaard R, Wojtaszewski JF, Pilegaard H (2008) Regulation of PDH in human arm and leg muscles at rest and during intense exercise. Am J Physiol Endocrinol Metab 294:E36–E42

    Article  CAS  PubMed  Google Scholar 

  36. Kiilerich K, Gudmundsson M, Birk JB, Lundby C, Taudorf S, Plomgaard P, Saltin B, Pedersen PA, Wojtaszewski JF, Pilegaard H (2010) Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle. Diabetes 59:26–32

    Article  CAS  PubMed  Google Scholar 

  37. Kiilerich K, Ringholm S, Bienso RS, Fisher JP, Iversen N, van Hall G, Wojtaszewski JFP, Saltin B, Lundby C, Calbet JAL, Pilegaard H (2011) Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest. J Appl Physiol 111:751–757

    Article  CAS  PubMed  Google Scholar 

  38. Klein DK, Pilegaard H, Treebak JT, Jensen TE, Viollet B, Schjerling P, Wojtaszewski JF (2007) Lack of AMPKalpha2 enhances pyruvate dehydrogenase activity during exercise. Am J Physiol Endocrinol Metab 293:E1242–E1249

    Article  CAS  PubMed  Google Scholar 

  39. Klein S, Coyle EF, Wolfe RR (1994) Fat metabolism during low-intensity exercise in endurance-trained and untrained men. Am J Phys 267:E934–E940

    CAS  Google Scholar 

  40. Korotchkina LG, Khailova LS, Severin SE (1995) The effect of phosphorylation on pyruvate dehydrogenase. FEBS Lett 364:185–188

    Article  CAS  PubMed  Google Scholar 

  41. Korotchkina LG, Patel MS (2001) Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem 276:37223–37229

    Article  CAS  PubMed  Google Scholar 

  42. LeBlanc PJ, Howarth KR, Gibala MJ, Heigenhauser GJ (2004) Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol 97:2148–2153

    Article  CAS  PubMed  Google Scholar 

  43. LeBlanc PJ, Peters SJ, Tunstall RJ, Cameron-Smith D, Heigenhauser GJ (2004) Effects of aerobic training on pyruvate dehydrogenase and pyruvate dehydrogenase kinase in human skeletal muscle. J Physiol 557:559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Dash RK, Kim J, Saidel GM, Cabrera ME (2009) Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies. Am J Physiol Cell Physiol 296:C25–C46

    Article  CAS  PubMed  Google Scholar 

  45. Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New York

    Google Scholar 

  46. McConell GK, Lee-Young RS, Chen ZP, Stepto NK, Huynh NN, Stephens TJ, Canny BJ, Kemp BE (2005) Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol 568:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mourtzakis M, Saltin B, Graham T, Pilegaard H (2006) Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids. J Appl Physiol 100:1822–1830

    Article  CAS  PubMed  Google Scholar 

  48. Ozden O, Park SH, Wagner BA, Yong SH, Zhu Y, Vassilopoulos A, Jung B, Buettner GR, Gius D (2014) SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med 76:163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Phys 277:E890–E900

    CAS  Google Scholar 

  50. Passonneau JV, Lauderdale VR (1974) A comparison of three methods of glycogen measurement in tissues. Anal Biochem 60:405–412

    Article  CAS  PubMed  Google Scholar 

  51. Peronnet F, Massicotte D (1991) Table of nonprotein respiratory quotient: an update. Can J Sport Sci 16:23–29

    CAS  PubMed  Google Scholar 

  52. Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM (1996) Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Phys 270:E265–E272

    CAS  Google Scholar 

  53. Pilegaard H, Birk JB, Sacchetti M, Mourtzakis M, Hardie DG, Stewart G, Neufer PD, Saltin B, van Hall G, Wojtaszewski JF (2006) PDH-E1alpha dephosphorylation and activation in human skeletal muscle during exercise: effect of intralipid infusion. Diabetes 55:3020–3027

    Article  CAS  PubMed  Google Scholar 

  54. Putman CT, Spriet LL, Hultman E, Lindinger MI, Lands LC, McKelvie RS, Cederblad G, Jones NL, Heigenhauser GJ (1993) Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. Am J Phys 265:E752–E760

    CAS  Google Scholar 

  55. Randle PJ (1964) Fuel and power in the control of carbohydrate metabolism in mammalian muscle. Symp Soc Exp Biol 18:129–155

    CAS  PubMed  Google Scholar 

  56. Randle PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14:263–283

    Article  CAS  PubMed  Google Scholar 

  57. Ringholm S, Olesen J, Pedersen JT, Brandt CT, Halling JF, Hellsten Y, Prats C, Pilegaard H (2013) Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1alpha. Exp Gerontol 48:1311–1318

    Article  CAS  PubMed  Google Scholar 

  58. Ronsen O, Holm K, Staff H, Opstad PK, Pedersen BK, Bahr R (2001) No effect of seasonal variation in training load on immuno-endocrine responses to acute exhaustive exercise. Scand J Med Sci Sports 11:141–148

    Article  CAS  PubMed  Google Scholar 

  59. Sahlin K (1985) NADH in human skeletal muscle during short-term intense exercise. Pflugers Arch 403:193–196

    Article  CAS  PubMed  Google Scholar 

  60. Sato S, Shirato K, Tachiyashiki K, Imaizumi K (2011) Muscle plasticity and beta(2)-adrenergic receptors: adaptive responses of beta(2)-adrenergic receptor expression to muscle hypertrophy and atrophy. J Biomed Biotechnol 2011:729598

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schwer B, North BJ, Frye RA, Ott M, Verdin E (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spriet LL, Tunstall RJ, Watt MJ, Mehan KA, Hargreaves M, Cameron-Smith D (2004) Pyruvate dehydrogenase activation and kinase expression in human skeletal muscle during fasting. J Appl Physiol 96:2082–2087

    Article  CAS  PubMed  Google Scholar 

  63. St Amand TA, Spriet LL, Jones NL, Heigenhauser GJ (2000) Pyruvate overrides inhibition of PDH during exercise after a low-carbohydrate diet. Am J Physiol Endocrinol Metab 279:E275–E283

    CAS  PubMed  Google Scholar 

  64. Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab 284:E855–E862

    Article  CAS  PubMed  Google Scholar 

  65. Sugden MC, Holness MJ (2006) Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem 112:139–149

    Article  CAS  PubMed  Google Scholar 

  66. Trumbo P, Schlicker S, Yates AA, Poos M (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102:1621–1630

    Article  PubMed  Google Scholar 

  67. Vargas-Ortiz K, Perez-Vazquez V, Diaz-Cisneros FJ, Figueroa A, Jimenez-Flores LM, Rodriguez-DelaRosa G, Macias MH (2015) Aerobic training increases expression levels of SIRT3 and PGC-1alpha in skeletal muscle of overweight adolescents without change in caloric intake. Pediatr Exerc Sci 27:177–184

    Article  PubMed  Google Scholar 

  68. Ward GR, Sutton JR, Jones NL, Toews CJ (1982) Activation by exercise of human skeletal muscle pyruvate dehydrogenase in vivo. Clin Sci (Lond) 63:87–92

    Article  CAS  Google Scholar 

  69. Watt MJ, Heigenhauser GJ, Dyck DJ, Spriet LL (2002) Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man. J Physiol 541:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Watt MJ, Heigenhauser GJ, LeBlanc PJ, Inglis JG, Spriet LL, Peters SJ (2004) Rapid upregulation of pyruvate dehydrogenase kinase activity in human skeletal muscle during prolonged exercise. J Appl Physiol 97:1261–1267

    Article  CAS  PubMed  Google Scholar 

  71. White AT, Schenk S (2012) NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab 303:E308–E321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Phys 270:E299–E304

    CAS  Google Scholar 

  73. Winder WW, Wilson HA, Hardie DG, Rasmussen BB, Hutber CA, Call GB, Clayton RD, Conley LM, Yoon S, Zhou B (1997) Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 82:219–225

    Article  CAS  PubMed  Google Scholar 

  74. Wojtaszewski JF, Mourtzakis M, Hillig T, Saltin B, Pilegaard H (2002) Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun 298:309–316

    Article  CAS  PubMed  Google Scholar 

  75. Wu P, Inskeep K, Bowker-Kinley MM, Popov KM, Harris RA (1999) Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes 48:1593–1599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the subjects for an extraordinary effort, Professor Graham Hardie for providing anti-bodies, and, in regards to Peter Plomgaard, The Centre for Physical Activity Research (CFAS) is supported by a grant from TrygFonden. The Centre of Inflammation and Metabolism (CIM) was supported by a grant from the Danish National Research Foundation (DNRF55) during the study period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriette Pilegaard.

Ethics declarations

The study was approved by the ethics Committee of Copenhagen and Frederiksberg communities (H-15010768) and was conducted in accordance with the guidelines of the Declaration of Helsinki. The subjects were informed about the experimental protocol, the risks, and discomforts that might occur in association with the intervention and provided written informed consent before the initiation of the study.

Funding

This study is funded by the Danish Ministry of Culture (1095421001), Danish Council for Independent Research (36723-104353), and LB: Danish Diabetes Academy (1105701001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudiksen, A., Bertholdt, L., Stankiewicz, T. et al. Effects of training status on PDH regulation in human skeletal muscle during exercise. Pflugers Arch - Eur J Physiol 469, 1615–1630 (2017). https://doi.org/10.1007/s00424-017-2019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2019-6

Keywords

Navigation