Skip to main content
Log in

Mechanical challenges to the glomerulus and podocyte loss: evolution of a paradigm

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In this article, I shall outline some of the most important aspects of the evidentiary basis of the so-called Kriz model for the development of glomerular sclerosis, a model that we continue to modify to this day. In my mind, the most important findings include the fact that podocytes are generally post-mitotic cells, so that loss of a significant number for any cause leads to podocyte insufficiency. Another pivotal finding is that in many experimental models and in human disease, podocytes detach from the GBM as living cells. These facts, together with biomechanical deduction, have led to the ongoing evolution of the original Heidelberg model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caulfield J, Reid J, Farquhar M (1976) Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial detachment. Lab Investig 34:43–59

    CAS  PubMed  Google Scholar 

  2. Deen WM, Robertson CR, Brenner BM (1972) A model of glomerular ultrafiltration in the rat. Am J Phys 223:1178–1183

    CAS  Google Scholar 

  3. Endlich N, Endlich KH (2012) The challenge and response of podocytes to glomerular hypertension. Semin Nephrol 32:327–341

    Article  CAS  PubMed  Google Scholar 

  4. Friedrich C, Endlich N, Kriz W, Endlich K (2006) Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal Physiol 291:F856–F865

    Article  CAS  PubMed  Google Scholar 

  5. Fries JW, Sandstrom DJ, Meyer TW, Rennke HG (1989) Glomerular hypertrophy and epithelial cell injury modulate progressive glomerular sclerosis in the rat. Lab Investig 60:205–218

    CAS  PubMed  Google Scholar 

  6. George B, Verma R, Soofi AA et al (2012) Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. J Clin Invest 122:674–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hara M, Yanagihara T, Takada T, Itoh M, Matsuno M, Yamamoto T, Kihara I (1998) Urinary excretion of podocytes reflects disease activity in children with glomerulonephritis. Am J Nephrol 18:35–41

    Article  CAS  PubMed  Google Scholar 

  8. Hara M, Yanagihara T, Kihara I (2007) Cumulative excretion of urinary podocytes reflects disease progression in IgA nephropathy and Schönlein-Henoch purpura nephritis. Clin J Am Soc Nephrol 2:231–238

    Article  CAS  PubMed  Google Scholar 

  9. Huber TB, Benzing T (2005) The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 14:211–216

    Article  PubMed  Google Scholar 

  10. Ingber DE, Wang N, Stamenovic D (2014) Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys 77:046603

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kriz W, Elger M, Lemley K, Sakai T (1990) Structure of the glomerular mesangium: A biomechanical interpretation. Kidney Int 38(Suppl 30):S2–S9

    Google Scholar 

  12. Kriz W, Elger M, Nagata M, Kretzler M, Uiker S, Koeppen-Hagemann I, Tenschert S, Lemley KV (1994) The role of podocytes in the development of glomerular sclerosis. Kidney Int 45(Suppl 42):S64–S72

    CAS  Google Scholar 

  13. Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M, Hähnel B (1994) A role for podocytes to counteract capillary wall distension. Kidney Int 45:369–376

    Article  CAS  PubMed  Google Scholar 

  14. Kriz W, Elger M, Mundel P, Lemley KV (1995) Structure-stabilizing forces in the glomerular tuft. J Am Soc Nephrol 5:1731–1739

    CAS  PubMed  Google Scholar 

  15. Kriz W, Hähnel B, Rösener S, Elger M (1995) Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int 48:1435–1450

    Article  CAS  PubMed  Google Scholar 

  16. Kriz W, Kretzler M, Nagata M, Provoost AP, Shirato I, Uiker S, Sakai T, Lemley KV (1996) A frequent pathway to glomerulosclerosis: deterioration of tuft architecture—podocyte damage—segmental sclerosis. Kidney Blood Press Res 19:245–253

    Article  CAS  PubMed  Google Scholar 

  17. Kriz W, Gretz N, Lemley KV (1998) Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 54:687–697

    Article  CAS  PubMed  Google Scholar 

  18. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV (2013) The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 304:F333–F347

    Article  CAS  PubMed  Google Scholar 

  19. Kriz W, Lemley KV (2015) A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 26:258–269

    Article  PubMed  Google Scholar 

  20. Kriz W, Lemley IV (2017) Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr Nephrol 32:405–417

    Article  PubMed  Google Scholar 

  21. Lemley KV, Elger M, Koeppen-Hagemann I, Kretzler M, Nagata M, Sakai T, Uiker S, Kriz W (1992) The glomerular mesangium: capillary support function and its failure under experimental conditions. Clin Investig 70:843–856

    Article  CAS  PubMed  Google Scholar 

  22. Lemley KV, Lafayette RA, Safai M, Derby G, Blouch KL, Myers BD (2002) Podocytopenia and disease severity in IgA nephropathy. Kidney Int 61:1475–1485

    Article  PubMed  Google Scholar 

  23. Lemley KV (2016) Glomerular pathology and the progression of chronic kidney disease. Am J Physiol Renal Physiol 310:F1385–F1388

    Article  CAS  PubMed  Google Scholar 

  24. Nagata M, Schärer K, Kriz W (1992) Glomerular damage after uninephrectomy in young rats. I. Hypertrophy and distortion of capillary architecture. Kidney Int 42:136–147

    Article  CAS  PubMed  Google Scholar 

  25. Nagata M, Kriz W (1992) Glomerular damage after uninephrectomy in young rats. II. Mechanical stress on podocytes as a pathway to sclerosis. Kidney Int 42:148–160

    Article  CAS  PubMed  Google Scholar 

  26. Nagata M, Yamaguchi Y, Komatsu Y, Ito K (1995) Mitosis and the presence of binucleate cells among glomerular podocytes in diseased human kidney. Nephron 70:68–71

    Article  CAS  PubMed  Google Scholar 

  27. Pabst R, Sterzel RB (1983) Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int 24:626–631

    Article  CAS  PubMed  Google Scholar 

  28. Racusen LC, Fivush RA, Andersson H, Gahl WA (1991) Culture of renal tubular cells from the urine of patients with nephropathic cystinosis. J Am Soc Nephrol 1:1028–1033

    CAS  PubMed  Google Scholar 

  29. Riser BL, Cortes P, Zhao X, Bernstein J, Dumler F, Narins RG (1992) Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest 90:1932–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tenschert S, Elger M, Lemley KV (1995) Glomerular hypertrophy after subtotal nephrectomy: relationship to early glomerular injury. Virchows Arch 426:509–517

    CAS  PubMed  Google Scholar 

  31. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV (2003) Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol 285:F40–F48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC (2005) Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 16:2941–2952

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin V. Lemley.

Additional information

This article is part of the special issue on Functional Anatomy of the Kidney in Health and Disease in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemley, K.V. Mechanical challenges to the glomerulus and podocyte loss: evolution of a paradigm. Pflugers Arch - Eur J Physiol 469, 959–963 (2017). https://doi.org/10.1007/s00424-017-2012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2012-0

Keywords

Navigation