Skip to main content

Advertisement

Log in

MicroRNA’s impact on neurotransmitter and neuropeptide systems: small but mighty mediators of anxiety

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Psychiatric disorders rank among the most common severe diseases worldwide, with millions of people affected worldwide every year. The symptoms are manifold, and the outcome for the patients is often unclear. As a high and yearly rising cost burden for society, anxiety disorders, depression and their related mental disorders are currently a well-researched topic in order to develop new functional pharmacological therapies as alternatives to those that are in use and bear many unpleasant side effects. Brain circuitries, such as those underlying anxiety formations, are mainly driven by the interplay of various neurotransmitter systems and the interaction of different brain loci, as well as the modulating impact of neuropeptides. Targeting those networks is a complex but promising way to regulate mood. Alterations on molecular level of the neuronal cell in response to respective receptor activation, especially at post-transcriptional level via the highly regulatory function of non-coding RNAs such as microRNAs (miRNAs) seem to hold a promising future in the development of novel therapeutic strategies and are therefore under intensified investigation. This review focusses on the impact of miRNAs on the neurotransmitter and neuropeptide systems of the central nervous system relevant for the formation of anxiety disorders and discusses the potential of miRNAs for the development of new therapeutic strategies for anxiety and mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari A (2014) Distributed circuits underlying anxiety. Front Behav Neurosci 8:112. doi:10.3389/fnbeh.2014.00112

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4. doi:10.7554/eLife.05005

  3. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488. doi:10.1038/nrm3611

    Article  CAS  PubMed  Google Scholar 

  4. Bai M, Zhu XZ, Zhang Y, Zhang S, Zhang L, Xue L, Zhong M, Zhang X (2014) Anhedonia was associated with the dysregulation of hippocampal HTR4 and microRNA Let-7a in rats. Physiol Behav 129:135–141. doi:10.1016/j.physbeh.2014.02.035

    Article  CAS  PubMed  Google Scholar 

  5. Baldwin DS, Anderson IM, Nutt DJ, Bandelow B, Bond A, Davidson JR, den Boer JA, Fineberg NA, Knapp M, Scott J, Wittchen HU, British Association for P (2005) Evidence-based guidelines for the pharmacological treatment of anxiety disorders: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 19:567–596. doi:10.1177/0269881105059253

    Article  CAS  PubMed  Google Scholar 

  6. Bandelow B, Zohar J, Hollander E, Kasper S, Moller HJ, Wfsbp Task Force on Treatment Guidelines for Anxiety O-C, Post-Traumatic Stress D, Zohar J, Hollander E, Kasper S, Moller HJ, Bandelow B, Allgulander C, Ayuso-Gutierrez J, Baldwin DS, Buenvicius R, Cassano G, Fineberg N, Gabriels L, Hindmarch I, Kaiya H, Klein DF, Lader M, Lecrubier Y, Lepine JP, Liebowitz MR, Lopez-Ibor JJ, Marazziti D, Miguel EC, Oh KS, Preter M, Rupprecht R, Sato M, Starcevic V, Stein DJ, van Ameringen M, Vega J (2008) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and post-traumatic stress disorders—first revision. The world journal of biological psychiatry 9:248-312. doi:10.1080/15622970802465807

  7. Bartz JA, Zaki J, Bolger N, Ochsner KN (2011) Social effects of oxytocin in humans: context and person matter. Trends Cogn Sci 15:301–309. doi:10.1016/j.tics.2011.05.002

    CAS  PubMed  Google Scholar 

  8. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329:1537–1541. doi:10.1126/science.1193692

    Article  CAS  PubMed  Google Scholar 

  9. Bergink V, van Megen HJ, Westenberg HG (2004) Glutamate and anxiety. Eur Neuropsychopharmacol 14:175–183. doi:10.1016/S0924-977X(03)00100-7

    Article  CAS  PubMed  Google Scholar 

  10. Bicker S, Lackinger M, Weiss K, Schratt G (2014) MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 71:3987–4005. doi:10.1007/s00018-014-1671-7

    Article  CAS  PubMed  Google Scholar 

  11. Brothers SP, Wahlestedt C (2010) Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Mol Med 2:429–439. doi:10.1002/emmm.201000100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calhoon GG, Tye KM (2015) Resolving the neural circuits of anxiety. Nat Neurosci 18:1394–1404. doi:10.1038/nn.4101

    Article  CAS  PubMed  Google Scholar 

  13. Chen YL, Shen CK (2013) Modulation of mGluR-dependent MAP1B translation and AMPA receptor endocytosis by microRNA miR-146a-5p. J Neurosci 33:9013–9020. doi:10.1523/JNEUROSCI.5210-12.2013

    Article  CAS  PubMed  Google Scholar 

  14. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408. doi:10.1038/nn.2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi JW, Kang SM, Lee Y, Hong SH, Sanek NA, Young WS, Lee HJ (2013) MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating microRNA. J Neurochem 126:331–337. doi:10.1111/jnc.12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corbel C, Hernandez I, Wu B, Kosik KS (2015) Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Dev 10:20. doi:10.1186/s13064-015-0047-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Croce N, Gelfo F, Ciotti MT, Federici G, Caltagirone C, Bernardini S, Angelucci F (2013) NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection? Mol Cell Biochem 376:189–195. doi:10.1007/s11010-013-1567-0

    Article  CAS  PubMed  Google Scholar 

  18. Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H (2003) Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 17:2409–2417

    Article  PubMed  Google Scholar 

  19. Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D (2015) MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol Psychiatry 20:1219–1231. doi:10.1038/mp.2014.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fendt M, Schmid S, Thakker DR, Jacobson LH, Yamamoto R, Mitsukawa K, Maier R, Natt F, Husken D, Kelly PH, McAllister KH, Hoyer D, van der Putten H, Cryan JF, Flor PJ (2008) mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiatry 13:970–979. doi:10.1038/sj.mp.4002073

    Article  CAS  PubMed  Google Scholar 

  21. Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, Nakagawa N, Xin C, Newitt R, Pandya S, Xia TH, Liu X, Borza DB, Grafals M, Shankland SJ, Himmelfarb J, Portilla D, Liu S, Chau BN, Duffield JS (2015) Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125:141–156. doi:10.1172/JCI75852

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, Dodel R, Ekman M, Faravelli C, Fratiglioni L, Gannon B, Jones DH, Jennum P, Jordanova A, Jonsson L, Karampampa K, Knapp M, Kobelt G, Kurth T, Lieb R, Linde M, Ljungcrantz C, Maercker A, Melin B, Moscarelli M, Musayev A, Norwood F, Preisig M, Pugliatti M, Rehm J, Salvador-Carulla L, Schlehofer B, Simon R, Steinhausen HC, Stovner LJ, Vallat JM, Van den Bergh P, van Os J, Vos P, Xu W, Wittchen HU, Jonsson B, Olesen J, Group CD (2011) Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:718–779. doi:10.1016/j.euroneuro.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  23. Haramati S, Navon I, Issler O, Ezra-Nevo G, Gil S, Zwang R, Hornstein E, Chen A (2011) MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34. J Neurosci 31:14191–14203. doi:10.1523/JNEUROSCI.1673-11.2011

    Article  CAS  PubMed  Google Scholar 

  24. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci 109:18962–18967. doi:10.1073/pnas.1121288109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K, Grabe HJ, Lang UE, Fusar-Poli P, Borgwardt S (2015) BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev 55:107–118. doi:10.1016/j.neubiorev.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  26. Heilig M (2004) The NPY system in stress, anxiety and depression. Neuropeptides 38:213–224. doi:10.1016/j.npep.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  27. Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci 95:15049–15054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herzer S, Silahtaroglu A, Meister B (2012) Locked nucleic acid-based in situ hybridisation reveals miR-7a as a hypothalamus-enriched microRNA with a distinct expression pattern. J Neuroendocrinol 24:1492–1504. doi:10.1111/j.1365-2826.2012.02358.x

    Article  CAS  PubMed  Google Scholar 

  29. Ho VM, Dallalzadeh LO, Karathanasis N, Keles MF, Vangala S, Grogan T, Poirazi P, Martin KC (2014) GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci 61:1–12. doi:10.1016/j.mcn.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  30. Holsboer F, Ising M (2008) Central CRH system in depression and anxiety—evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 583:350–357. doi:10.1016/j.ejphar.2007.12.032

    Article  CAS  PubMed  Google Scholar 

  31. Hu Z, Zhao J, Hu T, Luo Y, Zhu J, Li Z (2015) miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. J Cell Biol 208:949–959. doi:10.1083/jcb.201404092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334. doi:10.1016/j.tins.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, Gil S, Mayberg HS, Dunlop BW, Menke A, Awatramani R, Binder EB, Deneris ES, Lowry CA, Chen A (2014) MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron 83:344–360. doi:10.1016/j.neuron.2014.05.042

    Article  CAS  PubMed  Google Scholar 

  34. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433. doi:10.1038/nrg3965

    Article  CAS  PubMed  Google Scholar 

  35. Jovasevic V, Corcoran KA, Leaderbrand K, Yamawaki N, Guedea AL, Chen HJ, Shepherd GM, Radulovic J (2015) GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat Neurosci 18:1265–1271. doi:10.1038/nn.4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keifer J, Zheng Z, Ambigapathy G (2015) A microRNA-BDNF negative feedback signaling loop in brain: implications for Alzheimer’s disease. MicroRNA 4:101–108

    Article  CAS  PubMed  Google Scholar 

  37. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:617–627. doi:10.1001/archpsyc.62.6.617

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15:1613–1620. doi:10.1038/nn.3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lecrubier Y (2007) Widespread underrecognition and undertreatment of anxiety and mood disorders: results from 3 European studies. J Clin Psychiatry 68(Suppl 2):36–41

    PubMed  Google Scholar 

  40. Lee HK, Finniss S, Cazacu S, Xiang C, Brodie C (2014) Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression. Stem Cells Dev 23:2851–2861. doi:10.1089/scd.2014.0146

    Article  CAS  PubMed  Google Scholar 

  41. Letellier M, Elramah S, Mondin M, Soula A, Penn A, Choquet D, Landry M, Thoumine O, Favereaux A (2014) miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nat Neurosci 17:1040–1042. doi:10.1038/nn.3762

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Li S, Yan J, Wang D, Yin R, Zhao L, Zhu Y, Zhu X (2015) miR-182 (microRNA-182) suppression in the hippocampus evokes antidepressant-like effects in rats. Prog Neuropsychopharmacol Biol Psychiatry 65:96–103. doi:10.1016/j.pnpbp.2015.09.004

    Article  PubMed  Google Scholar 

  43. Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, Ratnu VS, Boskovic Z, Kobor MS, Sun YE, Bredy TW (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 14:1115–1117. doi:10.1038/nn.2891

    Article  CAS  PubMed  Google Scholar 

  44. Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B, Maussion G, Yang JP, Yerko V, Vigneault E, El Mestikawy S, Mechawar N, Pavlidis P, Turecki G (2014) miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med 20:764–768. doi:10.1038/nm.3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lydiard RB (2003) The role of GABA in anxiety disorders. J Clin Psychiatry 64(Suppl 3):21–27

    CAS  PubMed  Google Scholar 

  46. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349. doi:10.1038/nature02873

    Article  CAS  PubMed  Google Scholar 

  47. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17:3030–3042. doi:10.1093/hmg/ddn201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E, Akbarian S (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65:1006–1014. doi:10.1016/j.biopsych.2008.11.019

    Article  CAS  PubMed  Google Scholar 

  49. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12:524–538. doi:10.1038/nrn3044

    Article  CAS  PubMed  Google Scholar 

  50. Mor M, Nardone S, Sams DS, Elliott E (2015) Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 6:46. doi:10.1186/s13229-015-0040-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moya PR, Wendland JR, Salemme J, Fried RL, Murphy DL (2013) miR-15a and miR-16 regulate serotonin transporter expression in human placental and rat brain raphe cells. Int J Neuropsychopharmacol 16:621–629. doi:10.1017/S1461145712000454

    Article  CAS  PubMed  Google Scholar 

  52. Muinos-Gimeno M, Guidi M, Kagerbauer B, Martin-Santos R, Navines R, Alonso P, Menchon JM, Gratacos M, Estivill X, Espinosa-Parrilla Y (2009) Allele variants in functional microRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat 30:1062–1071. doi:10.1002/humu.21005

    Article  CAS  PubMed  Google Scholar 

  53. Muinos-Gimeno M, Montfort M, Bayes M, Estivill X, Espinosa-Parrilla Y (2010) Design and evaluation of a panel of single-nucleotide polymorphisms in microRNA genomic regions for association studies in human disease. Eur J Hum Genet 18:218–226. doi:10.1038/ejhg.2009.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muiños-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipilä T, Maron E, Pettai K, Kananen L, Navinés R, Martín-Santos R, Gratacòs M, Metspalu A, Hovatta I, Estivill X (2011) Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiatry 69:526–533. doi:10.1016/j.biopsych.2010.10.010

    Article  PubMed  Google Scholar 

  55. Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35:649–659. doi:10.1016/j.tins.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  56. Neumann ID, Slattery DA (2015) Oxytocin in general anxiety and social fear: a translational approach. Biological Psychiatry. doi:10.1016/j.biopsych.2015.06.004

  57. Nutt DJ, Ballenger JC, Sheehan D, Wittchen HU (2002) Generalized anxiety disorder: comorbidity, comparative biology and treatment. Int J Neuropsychopharmacol 5:315–325. doi:10.1017/S1461145702003048

    Article  PubMed  Google Scholar 

  58. O’Carroll D, Schaefer A (2013) General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology 38:39–54. doi:10.1038/npp.2012.87

    Article  PubMed  PubMed Central  Google Scholar 

  59. O’Connor R, Dinan T, Cryan J (2012) Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 17:359–376. doi:10.1038/mp.2011.162

    Article  PubMed  Google Scholar 

  60. O’Connor RM, Grenham S, Dinan TG, Cryan JF (2013) microRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol 16:1885–1892. doi:10.1017/S1461145713000448

    Article  PubMed  Google Scholar 

  61. Pape HC, Jungling K, Seidenbecher T, Lesting J, Reinscheid RK (2010) Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology 58:29–34. doi:10.1016/j.neuropharm.2009.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quesseveur G, David DJ, Gaillard MC, Pla P, Wu MV, Nguyen HT, Nicolas V, Auregan G, David I, Dranovsky A, Hantraye P, Hen R, Gardier AM, Deglon N, Guiard BP (2013) BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 3:e253. doi:10.1038/tp.2013.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, Schratt GM (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32:619–632. doi:10.1128/MCB.05896-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sabban EL, Serova LI, Alaluf LG, Laukova M, Peddu C (2015) Comparative effects of intranasal neuropeptide Y and HS014 in preventing anxiety and depressive-like behavior elicited by single prolonged stress. Behav Brain Res 295:9–16. doi:10.1016/j.bbr.2014.12.038

    Article  CAS  PubMed  Google Scholar 

  65. Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T, Madronal N, Donaldson ZR, Drew LJ, Dranovsky A, Gross CT, Tanaka KF, Hen R (2015) 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci 18:1606–1616. doi:10.1038/nn.4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809. doi:10.1126/science.1083328

    Article  CAS  PubMed  Google Scholar 

  67. Santarelli DM, Liu B, Duncan CE, Beveridge NJ, Tooney PA, Schofield PR, Cairns MJ (2013) Gene-microRNA interactions associated with antipsychotic mechanisms and the metabolic side effects of olanzapine. Psychopharmacology (Berl) 227:67–78. doi:10.1007/s00213-012-2939-y

    Article  CAS  Google Scholar 

  68. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56:131–137. doi:10.1016/S0091-3057(96)00169-4

    Article  CAS  PubMed  Google Scholar 

  69. Song MF, Dong JZ, Wang YW, He J, Ju X, Zhang L, Zhang YH, Shi JF, Lv YY (2015) CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J Affect Disord 178:25–31. doi:10.1016/j.jad.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  70. Sorensen G, Lindberg C, Wortwein G, Bolwig TG, Woldbye DP (2004) Differential roles for neuropeptide Y Y1 and Y5 receptors in anxiety and sedation. J Neurosci Res 77:723–729. doi:10.1002/jnr.20200

    Article  CAS  PubMed  Google Scholar 

  71. Steimer T (2002) The biology of fear- and anxiety-related behaviors. Dialogues Clin Neurosci 4:231–249

    PubMed  PubMed Central  Google Scholar 

  72. Su M, Hong J, Zhao Y, Liu S, Xue X (2015) MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA132 in rats with depression. Mol Med Rep 12:5399–5406. doi:10.3892/mmr.2015.4104

    CAS  PubMed  Google Scholar 

  73. Szulwach K, Li X, Smrt R, Li Y, Luo Y, Lin L, Santistevan N, Li W, Zhao X, Jin P (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189:127–141. doi:10.1083/jcb.200908151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tapocik JD, Barbier E, Flanigan M, Solomon M, Pincus A, Pilling A, Sun H, Schank JR, King C, Heilig M (2014) microRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. J Neurosci 34:4581–4588. doi:10.1523/JNEUROSCI.0445-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  75. van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S, Janssen HL, Kootstra NA, Reesink HW (2015) Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Alimentary pharmacology & therapeutics. doi:10.1111/apt.13432

  76. Varendi K, Kumar A, Harma MA, Andressoo JO (2014) miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cell Mol Life Sci 71:4443–4456. doi:10.1007/s00018-014-1628-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vasudevan S, Tong Y, Steitz J (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934. doi:10.1126/science.1149460

    Article  CAS  PubMed  Google Scholar 

  78. Vinnikov IA, Hajdukiewicz K, Reymann J, Beneke J, Czajkowski R, Roth LC, Novak M, Roller A, Dorner N, Starkuviene V, Theis FJ, Erfle H, Schutz G, Grinevich V, Konopka W (2014) Hypothalamic miR-103 protects from hyperphagic obesity in mice. J Neurosci 34:10659–10674. doi:10.1523/JNEUROSCI.4251-13.2014

    Article  PubMed  Google Scholar 

  79. Winner B, Kohl Z, Gage FH (2011) Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 33:1139–1151. doi:10.1111/j.1460-9568.2011.07613.x

    Article  PubMed  Google Scholar 

  80. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B, Olesen J, Allgulander C, Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-Carulla L, Simon R, Steinhausen HC (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:655–679. doi:10.1016/j.euroneuro.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  81. Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O (2004) Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43:487–497. doi:10.1016/j.neuron.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  82. Young LJ, Barrett CE (2015) Neuroscience. Can oxytocin treat autism? Science 347:825–826. doi:10.1126/science.aaa8120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao C, Huang C, Weng T, Xiao X, Ma H, Liu L (2012) Computational prediction of microRNAs targeting GABA receptors and experimental verification of miR-181, miR-216 and miR-203 targets in GABA-A receptor. BMC Res Notes 5:91. doi:10.1186/1756-0500-5-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y, Damschroder-Williams P, Du J, Chen G, Manji HK (2009) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34:1395–1405. doi:10.1038/npp.2008.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Martinetz.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinetz, S. MicroRNA’s impact on neurotransmitter and neuropeptide systems: small but mighty mediators of anxiety. Pflugers Arch - Eur J Physiol 468, 1061–1069 (2016). https://doi.org/10.1007/s00424-016-1814-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1814-9

Keywords

Navigation