Skip to main content
Log in

Roles for long non-coding RNAs in physiology and disease

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

While the vast majority of the genome is transcribed into RNA, only a small fraction of these transcripts have protein-coding potential. A large fraction of the transcribed RNA belongs to the class known as long non-coding RNAs (lncRNAs). Several recent studies have shown that at least some of these lncRNA transcripts represent functional RNA molecules. LncRNAs can utilize a wide range of mechanisms to regulate the RNA and/or the protein content of a cell on the transcriptional and the post-transcriptional levels. So far, many studies have identified differentially expressed lncRNAs in various physiological contexts, genetic disorders and human diseases. A steadily increasing number of studies could establish functional roles for some of these lncRNAs in developmental processes, cancer and tissue homeostasis. Taken together, these functions provide an additional layer of gene regulation and contribute to the high complexity of physiological and disease-related phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Azzalin CM, Reichenbach P (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318(80):798–801

    Article  CAS  PubMed  Google Scholar 

  2. van Bakel H, Nislow C, Blencowe BJ, Hughes TR (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol 8:e1000371. doi:10.1371/journal.pbio.1000371

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bartolomei MS, Zemel STS (1991) Parental imprinting of the mouse H19 gene. Nature 9:153–155

    Article  Google Scholar 

  4. Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N, Duboule D, Ephrussi A, Ferguson-Smith AC, Gingeras TR, Haerty W, Higgs DR, Miska EA, Ponting CP (2014) Considerations when investigating lncRNA function in vivo. Elife 3:1–14. doi:10.7554/eLife.03058

  5. Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JFKJ (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12:1020–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru NIW (1999) D3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979

    CAS  PubMed  Google Scholar 

  7. Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D (2012) A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149:819–831. doi:10.1016/j.cell.2012.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cabianca DS, Gabellini D (2010) The cell biology of disease: FSHD—copy number variations on the theme of muscular dystrophy. J Cell Biol 191:1049–1060. doi: 10.1083/jcb.201007028

  9. Cabili CT, Loyal G, Koziol M, Barbara AR, Tazon-Vega LR (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. doi:10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest ARR, Carninci P, Biffo S, Stupka E, Gustincich S (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457. doi:10.1038/nature11508

    Article  CAS  PubMed  Google Scholar 

  11. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369. doi:10.1016/j.cell.2011.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308(80):1149–1154. doi:10.1126/science.1108625

    Article  CAS  PubMed  Google Scholar 

  13. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. doi:10.1101/gr.132159.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28:491–501. doi:10.1101/gad.234419.113

    Article  PubMed  PubMed Central  Google Scholar 

  15. van Dijk M, Thulluru HK, Mulders J, Michel OJ, Poutsma A, Windhorst S, Kleiverda G, Sie D, Lachmeijer AMA, Oudejans CBM (2012) HELLP babies link a novel lincRNA to the trophoblast cell cycle. J Clin Invest 122:4003–4011. doi:10.1172/JCI65171

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dinger M, Amaral P, Mercer T (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:1433–1445. doi:10.1101/gr.078378.108.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101–108. doi:10.1038/nature11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eddy SR, Hughes H (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929. doi:10.1038/35103511

    Article  CAS  PubMed  Google Scholar 

  19. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. doi:10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  20. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730. doi:10.1038/nm1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Faghihi MA, Zhang M, Huang J et al. (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11

  22. Fejes-Toth K, Sotirova V, Sachidanandam R, Assaf G, Hannon GJ, Kapranov P, Foissac S, Willingham AT, Duttagupta R, Dumais E, Gingeras TR (2009) Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457:1028–1032. doi:10.1038/nature07759

    Article  CAS  PubMed Central  Google Scholar 

  23. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484. doi:10.1101/gad.1416106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Geng YJ, Xie SL, Li Q, Ma J, Wang GY (2011) Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res 39:2119–2128. doi:10.1177/147323001103900608

    Article  CAS  PubMed  Google Scholar 

  25. Gomez JA, Wapinski OL, Yang YW, Bureau J, Monack DM, Chang HY, Brahic M, Kirkegaard K (2013) NeST, a long noncoding RNA, controls microbial susceptibility and epigenetic activation of the Ifng locus. Cell 152:743–754. doi:10.1016/j.cell.2013.01.015.NeST

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288. doi:10.1038/nature09701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Greer Eric L, Yang S (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. doi:10.1016/j.devcel.2012.12.012

  29. Guo X, Gao L, Wang Y et al. (2015) Advances in long noncoding RNAs: identification, structure prediction and function annotation. Brief Funct Genomics 1–9. doi: 10.1093/bfgp/elv022

  30. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076. doi:10.1038/nature08975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346. doi:10.1038/nature10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–251. doi:10.1016/j.cell.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han P, Li W, Lin C-H, Yang J, Shang C, Nurnberg ST, Jin KK, Xu W, Lin C-Y, Lin C-J, Xiong Y, Chien H-C, Zhou B, Ashley E, Bernstein D, Chen P-S, Chen H-SV, Quertermous T, Chang C-P (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106. doi:10.1038/nature13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hang CT, Yang J, Han P, Cheng H-L, Shang C, Ashley E, Zhou B, Chang C-P (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62–67. doi:10.1038/nature10222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hessels D, Klein Gunnewiek JMT, Van Oort I, Karthaus HFM, Van Leenders GJL, Van Balken B, Kiemeney LA, Witjes JA, Schalken JA, Culig Z (2003) DD3PCA3-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 44:8–16. doi:10.1016/S0302-2838(03)00201-X

    Article  CAS  PubMed  Google Scholar 

  36. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367. doi:10.1073/pnas.0903103106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerød A, Børresen-Dale A-L, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629. doi:10.1038/ng.848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099. doi:10.1007/s10038-006-0070-9

    Article  CAS  PubMed  Google Scholar 

  39. Cajigas I, Leib DE, Cochrane J, Luo H, Swyter KR, Chen S, Clark BS, Thompson J, Yates JR III, Robert E, Kingston JDK (2015) Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling. Development 142:2641–2652

    Article  CAS  PubMed  Google Scholar 

  40. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Müller-Tidow C (2003) MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041. doi:10.1038/sj.onc.1206928

    Article  PubMed  Google Scholar 

  41. Jiang J, Jing Y, Cost GJ, Chiang J-C, Kolpa HJ, Cotton AM, Carone DM, Carone BR, Shivak DA, Guschin DY, Pearl JR, Rebar EJ, Byron M, Gregory PD, Brown CJ, Urnov FD, Hall LL, Lawrence JB (2013) Translating dosage compensation to trisomy 21. Nature 500:296–300. doi:10.1038/nature12394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karreth FA, Reschke M, Ruocco A, Ng C, Chapuy B, Léopold V, Sjoberg M, Keane TM, Verma A, Ala U, Tay Y, Wu D, Seitzer N, Velasco-Herrera MDC, Bothmer A, Fung J, Langellotto F, Rodig SJ, Elemento O, Shipp MA, Adams DJ, Chiarle R, Pandolfi PP (2015) The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell 161:319–332. doi:10.1016/j.cell.2015.02.043

  43. Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665. doi:10.1038/ncb2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, SK and SS (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32:1616–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koebnick C, Smith N, Black MH, Porter AH, Richie BA, Hudson S, Gililland D, Steven J, Longstreth GF, Baldwin P, Medical P, Park B (2013) The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:1180–1189. doi:10.1097/MPG.0b013e31824d256f.Pediatric

    Article  Google Scholar 

  46. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GX, Aiyer S, Raj A, Rinn JL, Chang HYKP (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235. doi:10.1038/nature11661.Control

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krol J, Krol I, Alvarez CPP, Fiscella M, Hierlemann A, Roska B, Filipowicz W (2015) A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nat Commun 6:7305. doi:10.1038/ncomms8305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114:1569–1575. doi:10.1161/CIRCRESAHA.114.303915

    Article  CAS  PubMed  Google Scholar 

  49. Lee J (2012) Epigenetic regulation by long noncoding RNAs. Science 338(80):1435–1439. doi:10.1126/science.1231776

    Article  CAS  PubMed  Google Scholar 

  50. Lee JT (2009) Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 23:1831–1842. doi:10.1101/gad.1811209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis ATS (1995) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 4:34–39

    Article  Google Scholar 

  52. Li L, Chang HY (2014) Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol 24:594–602. doi:10.1016/j.tcb.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meng L, Ward AJ, Seung C, Bennett CF, Arthur L, Beaudet FR (2015) Towards a therapy for Angelman syndrome by reduction of a long non-coding RNA. Nature 518:409–412. doi:10.1038/nature13975.Towards

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maamar H, Cabili MN, Rinn J, Raj A (2013) linc-HOXA1 is a noncoding RNA that represses HoXa1 transcription in cis. Genes Dev 27:1260–1271. doi:10.1101/gad.217018.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maass PG, Rump A, Schulz H, Stricker S, Schulze L, Platzer K, Aydin A, Tinschert S, Goldring MB, Luft FC, Bahring S, Bähring S (2012) A misplaced IncRNA causes brachydactyly in humans. J Clin Invest 122:3990–4002. doi:10.1172/JCI65508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 14:R131. doi:10.1186/gb-2013-14-11-r131

    Article  PubMed  PubMed Central  Google Scholar 

  57. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu Y-M, Robinson DR, David GB, AMC (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208. doi:10.1016/j.ygyno.2014.12.035.Pharmacologic

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991. doi:10.1093/embo-reports/kve230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. doi:10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  60. Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ, Glazov EA, Truong V, Schwenke M, Simons C, Matthaei KI, Saint R, Koopman P, Mattick JS (2011) Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res 39:2393–2403. doi:10.1093/nar/gkq1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114:1389–1397. doi:10.1161/CIRCRESAHA.114.303265

    Article  CAS  PubMed  Google Scholar 

  62. Mizrahi A, Czerniak A, Levy T, Amiur S, Gallula J, Matouk I, Abu-lail R, Sorin V, Birman T, de Groot N, Hochberg A, Ohana P (2009) Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J Transl Med 7:69. doi:10.1186/1479-5876-7-69

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, Fujita Y, Fujimori T, Standaert L, Marine J-C, Hirose T (2014) The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141:4618–4627. doi:10.1242/dev.110544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58. doi:10.1016/j.cell.2010.09.001.Long

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, Crippa S, Nemir M, Sarre A, Johnson R, Dauvillier J, Burdet F, Ibberson M, Guigo R, Xenarios I, Heymans S, Pedrazzini T (2015) Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 36:353–368. doi:10.1093/eurheartj/ehu180

    Article  PubMed  PubMed Central  Google Scholar 

  66. Panzitt K, Tschernatsch MMO, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H, Schroeder R, Trauner M, Zatloukal K (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132:330–342. doi:10.1053/j.gastro.2006.08.026

    Article  CAS  PubMed  Google Scholar 

  67. Penny GD, Kay GF, Sheardown SA, Rastan SBN (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    Article  CAS  PubMed  Google Scholar 

  68. Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57. doi:10.1016/j.cell.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. John R, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough H, Helms JA, Farnham PJ, Segal E, HYC (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell 129:1311–1323. doi:10.1021/ja8019214.Optimization

    Article  Google Scholar 

  70. Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DYR (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 13:230–233. doi:10.1038/nature14580

    Article  Google Scholar 

  71. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. doi:10.7554/eLife.01749

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schmitz K-M, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269. doi:10.1101/gad.590910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Siegfried NA, Busan S, Rice GM, Nelson JAE, Weeks KM (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965. doi:10.1038/nmeth.3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Standaert L, Adriaens C, Radaelli E, Standaert L, Adriaens C, Radaelli E, Keymeulen AVAN, Blanpain C, Hirose T, Nakagawa S, Marine J (2014) The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20:1–6. doi:10.1261/rna.047332.114

    Article  Google Scholar 

  75. Stankiewicz P, Sen P, Bhatt SS, Storer M, Xia Z, Bejjani BA, Ou Z, Wiszniewska J, Driscoll DJ, Maisenbacher MK, Bolivar J, Bauer M, Zackai EH, McDonald-McGinn D, Nowaczyk MMJ, Murray M, Hustead V, Mascotti K, Schultz R, Hallam L, McRae D, Nicholson AG, Newbury R, Durham-O’Donnell J, Knight G, Kini U, Shaikh TH, Martin V, Tyreman M, Simonic I, Willatt L, Paterson J, Mehta S, Rajan D, Fitzgerald T, Gribble S, Prigmore E, Patel A, Shaffer LG, Carter NP, Cheung SW, Langston C, Shaw-Smith C (2009) Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 84:780–791. doi:10.1016/j.ajhg.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun SB and T (2011) Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 44:359–373. doi:10.1016/j.micinf.2011.07.011.Innate

    Article  Google Scholar 

  77. Szafranski P, Dharmadhikari AV, Brosens E, Gurha P, Kolodziejska KE, Zhishuo O, Dittwald P, Majewski T, Mohan KN, Chen B, Person RE, Tibboel D, de Klein A, Pinner J, Chopra M, Malcolm G, Peters G, Arbuckle S, Guiang SF, Hustead VA, Jessurun J, Hirsch R, Witte DP, Maystadt I, Sebire N, Fisher R, Langston C, Sen P, Stankiewicz P (2013) Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res 23:23–33. doi:10.1101/gr.141887.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938. doi:10.1016/j.molcel.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsai M, Manor O, Wan Y, Mosammaparast N, Wang JK, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(80):689–693. doi:10.1126/science.1192002.Long

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115:668–677. doi:10.1161/circresaha.115.303836

    Article  CAS  PubMed  Google Scholar 

  81. Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio A (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464:409–412. doi:10.1038/nature08801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang H, Iacoangeli A, Lin D, Williams K, Denman RB, Hellen CUT, Tiedge H (2005) Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171:811–821. doi:10.1083/jcb.200506006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, Jiang Z, Xu J, Liu Q, Cao X (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–313. doi:10.1126/science.1251456

    Article  CAS  PubMed  Google Scholar 

  84. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361. doi:10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  85. Welsh IC, Kwak H, Chen FL, Werner M, Shopland LS, Danko CG, Lis JT, Zhang M, Martin JF, Kurpios NA (2015) Chromatin architecture of the Pitx2 locus requires CTCF- and Pitx2-dependent asymmetry that mirrors embryonic gut laterality. Cell Rep 13:337–349. doi:10.1016/j.celrep.2015.08.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu P, Zuo X, Ji A (2012) Stroke-induced microRNAs: the potential therapeutic role for stroke. Exp Ther Med 3:571–576. doi:10.3892/etm.2012.452

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu Q, Kim YC, Lu J, Xuan Z, Chen J, Zheng Y, Zhou T, Zhang MQ, Wu C-I, Wang SM (2008) Poly A-transcripts expressed in HeLa cells. PLoS One 3:e2803. doi:10.1371/journal.pone.0002803

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liua X, Liua L, Xua Q, Wua P, XZ & AJ (2012) MicroRNA as a novel drug target for cancer therapy. Expert Opin Biol Ther 12:573–580

    Article  Google Scholar 

  89. Yang Y, Wen L, Zhu H (2015) Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Biosci 5:59. doi:10.1186/s13578-015-0050-x

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou M-M (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674. doi:10.1016/j.molcel.2010.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT, Lee JT (2013) Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152:727–742. doi:10.1016/j.cell.2013.01.034

    Article  CAS  PubMed  Google Scholar 

  92. Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG, Chen LL (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48:219–230. doi:10.1016/j.molcel.2012.07.033

    Article  CAS  PubMed  Google Scholar 

  93. Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655. doi:10.1016/j.molcel.2012.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zangrando J, Zhang L, Vausort M, Maskali F, Marie P-Y, Wagner DR, Devaux Y (2014) Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 15:460. doi:10.1186/1471-2164-15-460

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Tracie Pennimpede and Reinier Boon for comments on the manuscript. We apologize to those colleagues whose work is not mentioned in this review due to space restrictions. The authors’ work is funded by the LOEWE-CGT (M.T.M.) and the DFG (German Research Foundation) Excellence Cluster Cardio-Pulmonary System (Exc147-2) (P.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Grote.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melissari, MT., Grote, P. Roles for long non-coding RNAs in physiology and disease. Pflugers Arch - Eur J Physiol 468, 945–958 (2016). https://doi.org/10.1007/s00424-016-1804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1804-y

Keywords

Navigation