Skip to main content
Log in

Mibefradil represents a new class of benzimidazole TRPM7 channel agonists

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a bi-functional protein comprising an ion channel moiety covalently linked to a protein kinase domain. Currently, the prevailing view is that a decrease in the cytosolic Mg2+ concentration leads to activation of divalent cation-selective TRPM7 currents. TRPM7 plays a role in immune responses, hypotension, tissue fibrosis, and tumor progression and, therefore, represents a new promising therapeutic target. Because of the dearth of pharmacological tools, our mechanistic understanding of the role of TRPM7 in physiology and pathophysiology still lags behind. Therefore, we have recently carried out a high throughput screen for small-molecule activators of TRPM7. We have characterized the phenanthrene naltriben as a first stimulatory agonist of the TRPM7 channel. Surprisingly, the effect of naltriben on TRPM7 was found to be unaffected by the physiological levels of cytosolic Mg2+. Here, we demonstrate that mibefradil and NNC 50–0396, two benzimidazole relatives of the TRPM7 inhibitor NS8593, are positive modulators of TRPM7. Using Ca2+ imaging and the patch-clamp technique, we show that mibefradil activates TRPM7-mediated Ca2+ entry and whole-cell currents. The response to mibefradil was fast, reversible, and reproducible. In contrast to naltriben, mibefradil efficiently activates TRPM7 currents only at physiological intracellular Mg2+ concentrations, and its stimulatory effect was fully abrogated by high internal Mg2+ levels. Consequently, a TRPM7 variant harboring a gain-of-function mutation was insensitive to further mibefradil activation. Finally, we observed that the effect of mibefradil was selective for TRPM7 when various TRP channels were tested. Taken together, mibefradil acts as a Mg2+-regulated agonist of the TRPM7 channel and, hence, uncovers a new class of TRPM7 agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TRPM7:

Melastatin-related TRP cation channel 7

AITC:

Allyl isothiocyanate

PS:

Pregnenolone sulfate

References

  1. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115(7):863–877

    Article  CAS  PubMed  Google Scholar 

  2. Abed E, Martineau C, Moreau R (2011) Role of melastatin transient receptor potential 7 channels in the osteoblastic differentiation of murine MC3T3 cells. Calcif Tissue Int 88(3):246–253. doi:10.1007/s00223-010-9455-z

    Article  CAS  PubMed  Google Scholar 

  3. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci U S A 97(13):7260–7265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bezprozvanny I, Tsien RW (1995) Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40–5967). Mol Pharmacol 48(3):540–549

    CAS  PubMed  Google Scholar 

  5. Brauchi S, Krapivinsky G, Krapivinsky L, Clapham DE (2008) TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane. Proc Natl Acad Sci U S A 105(24):8304–8308. doi:10.1073/pnas.0800881105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478):113–118. doi:10.1038/nature12823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824. doi:10.1038/39807

    Article  CAS  PubMed  Google Scholar 

  8. Chen YF, Chen YT, Chiu WT, Shen MR (2013) Remodeling of calcium signaling in tumor progression. J Biomed Sci 20:23. doi:10.1186/1423-0127-20-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen JP, Luan Y, You CX, Chen XH, Luo RC, Li R (2010) TRPM7 regulates the migration of human nasopharyngeal carcinoma cell by mediating Ca(2+) influx. Cell Calcium 47(5):425–432. doi:10.1016/j.ceca.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  10. Chen KH, Xu XH, Liu Y, Hu Y, Jin MW, Li GR (2013) TRPM7 channels regulate proliferation and adipogenesis in 3T3-L1 preadipocytes. J Cell Physiol 229(1):60–67. doi:10.1002/jcp.24417

    Google Scholar 

  11. Chubanov V, Mederos y Schnitzler M, Meissner M, Schafer S, Abstiens K, Hofmann T, Gudermann T (2012) Natural and synthetic modulators of SK (K(ca)2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7. Br J Pharmacol 166(4):1357–1376. doi:10.1111/j.1476-5381.2012.01855.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chubanov V, Schafer S, Ferioli S, Gudermann T (2014) Natural and synthetic modulators of the TRPM7 channel. Cell 3(4):1089–1101. doi:10.3390/cells3041089

    Article  CAS  Google Scholar 

  13. Chubanov V, Schlingmann KP, Waring J, Heinzinger J, Kaske S, Waldegger S, Mederos y Schnitzler M, Gudermann T (2007) Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J Biol Chem 282(10):7656–7667. doi:10.1074/jbc.M611117200

    Article  CAS  PubMed  Google Scholar 

  14. Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 101(9):2894–2899. doi:10.1073/pnas.0305252101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25(2):290–301. doi:10.1038/sj.emboj.7600931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark K, Middelbeek J, Morrice NA, Figdor CG, Lasonder E, van Leeuwen FN (2008) Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS One 3(3):e1876. doi:10.1371/journal.pone.0001876

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deason-Towne F, Perraud AL, Schmitz C (2012) Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C gamma2 (PLCgamma2) using TRPM7-kinase. Cell Signal 24(11):2070–2075. doi:10.1016/j.cellsig.2012.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Demeuse P, Penner R, Fleig A (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127(4):421–434. doi:10.1085/jgp.200509410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y, Clapham DE (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell 22(6):1149–1162. doi:10.1016/j.devcel.2012.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dorovkov MV, Kostyukova AS, Ryazanov AG (2011) Phosphorylation of annexin A1 by TRPM7 kinase: a switch regulating the induction of an alpha-helix. Biochemistry 50(12):2187–2193. doi:10.1021/bi101963h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res 106(5):992–1003. doi:10.1161/CIRCRESAHA.109.206771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, Parichy DM (2005) Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol 15(7):667–671. doi:10.1016/j.cub.2005.02.050

    Article  CAS  PubMed  Google Scholar 

  23. Fang L, Huang C, Meng X, Wu B, Ma T, Liu X, Zhu Q, Zhan S, Li J (2014) TGF-beta1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-beta1/Smad pathway. Toxicol Appl Pharmacol 280(2):335–344. doi:10.1016/j.taap.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  24. Fleig A, Chubanov V (2014) Trpm7. Handb Exp Pharmacol 222:521–546. doi:10.1007/978-3-642-54215-2_21

    Article  CAS  PubMed  Google Scholar 

  25. Gao H, Chen X, Du X, Guan B, Liu Y, Zhang H (2011) EGF enhances the migration of cancer cells by up-regulation of TRPM7. Cell Calcium 50(6):559–568. doi:10.1016/j.ceca.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  26. Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch H (2009) Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol 297(3):C493–C502. doi:10.1152/ajpcell.00624.2008

    Article  CAS  PubMed  Google Scholar 

  27. Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci 95(4):403–419

    Article  CAS  PubMed  Google Scholar 

  28. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A 102(32):11510–11515. doi:10.1073/pnas.0505149102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 13(13):1153–1158

    Article  CAS  PubMed  Google Scholar 

  30. Hofmann T, Schafer S, Linseisen M, Sytik L, Gudermann T, Chubanov V (2014) Activation of TRPM7 channels by small molecules under physiological conditions. Pflugers Arch 466(12):2177–2189. doi:10.1007/s00424-014-1488-0

    Article  CAS  PubMed  Google Scholar 

  31. Jiang J, Li MH, Inoue K, Chu XP, Seeds J, Xiong ZG (2007) Transient receptor potential melastatin 7-like current in human head and neck carcinoma cells: role in cell proliferation. Cancer Res 67(22):10929–10938. doi:10.1158/0008-5472.CAN-07-1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322(5902):756–760. doi:10.1126/science.1163493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin J, Wu LJ, Jun J, Cheng X, Xu H, Andrews NC, Clapham DE (2011) The channel kinase, TRPM7, is required for early embryonic development. Proc Natl Acad Sci U S A 109(5):E225–E233. doi:10.1073/pnas.1120033109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427(6971):260–265. doi:10.1038/nature02282

    Article  CAS  PubMed  Google Scholar 

  35. Kim BJ, Park EJ, Lee JH, Jeon JH, Kim SJ, So I (2008) Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci 99(12):2502–2509. doi:10.1111/j.1349-7006.2008.00982.x

    Article  CAS  PubMed  Google Scholar 

  36. Kozak JA, Matsushita M, Nairn AC, Cahalan MD (2005) Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen Physiol 126(5):499–514. doi:10.1085/jgp.200509324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE (2014) The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 157(5):1061–1072. doi:10.1016/j.cell.2014.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L (2012) KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One 7(8):e43859. doi:10.1371/journal.pone.0043859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leng TD, Li MH, Shen JF, Liu ML, Li XB, Sun HW, Branigan D, Zeng Z, Si HF, Li J, Chen J, Xiong ZG (2015) Suppression of TRPM7 inhibits proliferation, migration, and invasion of malignant human glioma cells. CNS Neurosci Ther 21(3):252–261. doi:10.1111/cns.12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mederos y Schnitzler M, Waring J, Gudermann T, Chubanov V (2008) Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J 22(5):1540–1551. doi:10.1096/fj.07-9694com

    Article  CAS  PubMed  Google Scholar 

  41. Meng X, Cai C, Wu J, Cai S, Ye C, Chen H, Yang Z, Zeng H, Shen Q, Zou F (2013) TRPM7 mediates breast cancer cell migration and invasion through the MAPK pathway. Cancer Lett 333(1):96–102. doi:10.1016/j.canlet.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  42. Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I, van Horssen R, Wieringa B, Canisius SV, Zwart W, Wessels LF, Sweep FC, Bult P, Span PN, van Leeuwen FN, Jalink K (2012) TRPM7 is required for breast tumor cell metastasis. Cancer Res 72(16):4250–4261. doi:10.1158/0008-5472.CAN-11-3863

    Article  CAS  PubMed  Google Scholar 

  43. Middelbeek J, Visser D, Henneman L, Kamermans A, Kuipers AJ, Hoogerbrugge PM, Jalink K, van Leeuwen FN (2015) TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation. Oncotarget 6(11):8760–8776

    Article  PubMed  PubMed Central  Google Scholar 

  44. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121(1):49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, van Leeuwen FN, Touyz RM (2010) Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension 56(3):453–462. doi:10.1161/HYPERTENSIONAHA.110.152058

    Article  CAS  PubMed  Google Scholar 

  46. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411(6837):590–595. doi:10.1038/35079092

    Article  CAS  PubMed  Google Scholar 

  47. Nilius B, Prenen J, Kamouchi M, Viana F, Voets T, Droogmans G (1997) Inhibition by mibefradil, a novel calcium channel antagonist, of Ca(2+)- and volume-activated Cl channels in macrovascular endothelial cells. Br J Pharmacol 121(3):547–555. doi:10.1038/sj.bjp.0701140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Numata T, Shimizu T, Okada Y (2007) Direct mechano-stress sensitivity of TRPM7 channel. Cell Physiol Biochem 19(1–4):1–8. doi:10.1159/000099187

    Article  CAS  PubMed  Google Scholar 

  49. Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98(2):245–253. doi:10.1161/01.RES.0000200179.29375.cc

    Article  CAS  PubMed  Google Scholar 

  50. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    Article  CAS  PubMed  Google Scholar 

  51. Perraud AL, Zhao X, Ryazanov AG, Schmitz C (2010) The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal 23(3):586–593. doi:10.1016/j.cellsig.2010.11.011

    Article  PubMed  PubMed Central  Google Scholar 

  52. Riley J, Wilton LV, Shakir SA (2002) A post-marketing observational study to assess the safety of mibefradil in the community in England. Int J Clin Pharmacol Ther 40(6):241–248

    Article  CAS  PubMed  Google Scholar 

  53. Romani AM (2011) Cellular magnesium homeostasis. Arch Biochem Biophys 512(1):1–23. doi:10.1016/j.abb.2011.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291(5506):1043–1047. doi:10.1126/science.1058519

    Article  CAS  PubMed  Google Scholar 

  55. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4(5):329–336. doi:10.1038/ncb781

    CAS  PubMed  Google Scholar 

  56. Ryazanova LV, Hu Z, Suzuki S, Chubanov V, Fleig A, Ryazanov AG (2014) Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice. Sci Rep 4:7599. doi:10.1038/srep07599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109. doi:10.1038/ncomms1108

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rybarczyk P, Gautier M, Hague F, Dhennin-Duthille I, Chatelain D, Kerr-Conte J, Pattou F, Regimbeau JM, Sevestre H, Ouadid-Ahidouch H (2012) Transient receptor potential melastatin-related 7 channel is overexpressed in human pancreatic ductal adenocarcinomas and regulates human pancreatic cancer cell migration. Int J Cancer 131(6):E851–E861. doi:10.1002/ijc.27487

    Article  CAS  PubMed  Google Scholar 

  59. Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME, Clapham DE (2013) Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation 128(2):101–114. doi:10.1161/CIRCULATIONAHA.112.000768

    Article  CAS  PubMed  Google Scholar 

  60. Sah R, Mesirca P, Van den Boogert M, Rosen J, Mably J, Mangoni ME, Clapham DE (2013) Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci U S A 110(32):E3037–E3046. doi:10.1073/pnas.1311865110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sahni J, Scharenberg AM (2008) TRPM7 ion channels are required for sustained phosphoinositide 3-kinase signaling in lymphocytes. Cell Metab 8(1):84–93. doi:10.1016/j.cmet.2008.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schmitz C, Brandao K, Perraud AL (2014) The channel-kinase TRPM7, revealing the untold story of Mg(2+) in cellular signaling. Magnesium Res 27(1):9–15. doi:10.1684/mrh.2014.0357

    Google Scholar 

  63. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114(2):191–200

    Article  CAS  PubMed  Google Scholar 

  64. Shen B, Sun L, Zheng H, Yang D, Zhang J, Zhang Q (2014) The association between single-nucleotide polymorphisms of TRPM7 gene and breast cancer in Han Population of Northeast China. Med Oncol 31(7):51. doi:10.1007/s12032-014-0051-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Siddiqui TA, Lively S, Vincent C, Schlichter LC (2012) Regulation of podosome formation, microglial migration and invasion by Ca(2+)-signaling molecules expressed in podosomes. J Neuroinflammation 9:250. doi:10.1186/1742-2094-9-250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sontia B, Montezano AC, Paravicini T, Tabet F, Touyz RM (2008) Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: effects of magnesium. Hypertension 51(4):915–921. doi:10.1161/HYPERTENSIONAHA.107.100339

    Article  CAS  PubMed  Google Scholar 

  67. SoRelle R (1998) Withdrawal of Posicor from market. Circulation 98(9):831–832

    Article  CAS  PubMed  Google Scholar 

  68. Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, Yue L, Runnels LW (2006) TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem 281(16):11260–11270. doi:10.1074/jbc.M512885200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Su LT, Liu W, Chen HC, Gonzalez-Pagan O, Habas R, Runnels LW (2011) TRPM7 regulates polarized cell movements. Biochem J 434(3):513–521. doi:10.1042/BJ20101678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB (2014) Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. Biochim Biophys Acta 1843(9):1839–1850. doi:10.1016/j.bbamcr.2014.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tashiro M, Inoue H, Konishi M (2014) Physiological pathway of magnesium influx in rat ventricular myocytes. Biophys J 107(9):2049–2058. doi:10.1016/j.bpj.2014.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Touyz RM (2008) Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 294(3):H1103–H1118. doi:10.1152/ajpheart.00903.2007

    Article  PubMed  Google Scholar 

  73. Tseveleki V, Rubio R, Vamvakas SS, White J, Taoufik E, Petit E, Quackenbush J, Probert L (2010) Comparative gene expression analysis in mouse models for multiple sclerosis, Alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes. Genomics 96(2):82–91. doi:10.1016/j.ygeno.2010.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Viana F, Van den Bosch L, Missiaen L, Vandenberghe W, Droogmans G, Nilius B, Robberecht W (1997) Mibefradil (Ro 40–5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22(4):299–311

    Article  CAS  PubMed  Google Scholar 

  75. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10(12):1421–1430. doi:10.1038/ncb1801

    Article  CAS  PubMed  Google Scholar 

  76. Wang J, Xiao L, Luo CH, Zhou H, Hu J, Tang YX, Fang KN, Zhang Y (2014) Overexpression of TRPM7 is associated with poor prognosis in human ovarian carcinoma. Asian Pac J Cancer Prev 15(9):3955–3958

    Article  PubMed  Google Scholar 

  77. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277(16):13569–13577. doi:10.1074/jbc.M200062200

    Article  CAS  PubMed  Google Scholar 

  78. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457(7231):901–905. doi:10.1038/nature07577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wolf FI, Trapani V (2012) Magnesium and its transporters in cancer: a novel paradigm in tumour development. Clin Sci 123(7):417–427. doi:10.1042/CS20120086

    Article  CAS  PubMed  Google Scholar 

  80. Yee NS, Kazi AA, Li Q, Yang Z, Berg A, Yee RK (2015) Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis. Biol Open 4(4):507–514. doi:10.1242/bio.20137088

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang Z, Faouzi M, Huang J, Geerts D, Yu H, Fleig A, Penner R (2014) N-Myc-induced up-regulation of TRPM6/TRPM7 channels promotes neuroblastoma cell proliferation. Oncotarget 5(17):7625–7634

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang Z, Wang M, Fan XH, Chen JH, Guan YY, Tang YB (2012) Upregulation of TRPM7 channels by angiotensin II triggers phenotypic switching of vascular smooth muscle cells of ascending aorta. Circ Res 111(9):1137–1146. doi:10.1161/CIRCRESAHA.112.273755

    Article  CAS  PubMed  Google Scholar 

  83. Zierler S, Yao G, Zhang Z, Kuo WC, Porzgen P, Penner R, Horgen FD, Fleig A (2011) Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem 286(45):39328–39335. doi:10.1074/jbc.M111.264341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.S. was supported by the Förderprogramm für Forschung und Lehre Fellowship (FöFoLe) of the LMU, Munich. V.C., S.Z., and T.G. were supported by the Deutsche Forschungsgemeinschaft, TRR 152. S.Z. was supported by Marie-Curie Fellowship (REA) FP7-PEOPLE-2012-CIG. We thank Joanna Zaißerer and Anna Erbacher for their excellent technical assistance.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Chubanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, S., Ferioli, S., Hofmann, T. et al. Mibefradil represents a new class of benzimidazole TRPM7 channel agonists. Pflugers Arch - Eur J Physiol 468, 623–634 (2016). https://doi.org/10.1007/s00424-015-1772-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1772-7

Keywords

Navigation