Skip to main content
Log in

Phosphoinositide regulation of TRPV1 revisited

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The heat- and capsaicin-sensitive transient receptor potential vanilloid 1 ion channel (TRPV1) is regulated by plasma membrane phosphoinositides. The effects of these lipids on this channel have been controversial. Recent articles re-ignited the debate and also offered resolution to place some of the data in a coherent picture. This review summarizes the literature on this topic and provides a detailed and critical discussion on the experimental evidence for the various effects of phosphatidylinositol 4,5-bisphosphayte [PI(4,5)P2 or PIP2] on TRPV1. We conclude that PI(4,5)P2 and potentially its precursor PI(4)P are positive cofactors for TRPV1, acting via direct interaction with the channel, and their depletion by Ca2+-induced activation of phospholipase Cδ isoforms (PLCδ) limits channel activity during capsaicin-induced desensitization. Other negatively charged lipids at higher concentrations can also support channel activity, which may explain some controversies in the literature. PI(4,5)P2 also partially inhibits channel activity in some experimental settings, and relief from this inhibition upon PLCβ activation may contribute to sensitization. The negative effect of PI(4,5)P2 is more controversial and its mechanism is less well understood. Other TRP channels from the TRPV and TRPC families may also undergo similar dual regulation by phosphoinositides, thus the complexity of TRPV1 regulation is not unique to this channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Badheka D, Rohacs T (2014) Regulation of the ion channel TRPM3 by phosphoinositides. Biophys J 106(2):334A

    Google Scholar 

  2. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282(5391):1141–1144

    CAS  PubMed  Google Scholar 

  4. Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWT (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci U S A 100(21):12480–12485

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Borbiro I, Badheka D, Rohacs T (2015) Activation of TRPV1 channels inhibit mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci Signal 8(363):ra15

    PubMed Central  PubMed  Google Scholar 

  6. Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez-Nilo F, Latorre R (2007) Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci U S A 104(24):10246–10251

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Brenner DS, Golden JP, Vogt SK, Dhaka A, Story GM, Gereau Iv RW (2014) A dynamic set point for thermal adaptation requires phospholipase C-mediated regulation of TRPM8 in vivo. Pain 155(10):2124–2133

    CAS  PubMed  Google Scholar 

  8. Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D (2013) TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77(4):667–679

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478):113–118

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    CAS  PubMed  Google Scholar 

  11. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    CAS  PubMed  Google Scholar 

  12. Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA (1999) Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 23(3):617–624

    CAS  PubMed  Google Scholar 

  13. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411(6840):957–962

    CAS  PubMed  Google Scholar 

  14. Chuang HH, Lin S (2009) Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci U S A 106(47):20097–20102

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Collins MD, Gordon SE (2013) Short-chain phosphoinositide partitioning into plasma membrane models. Biophys J 105(11):2485–2494

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Colquhoun D (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125(5):924–947

    CAS  PubMed  Google Scholar 

  17. Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284(3):1570–1582

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405(6783):183–187

    CAS  PubMed  Google Scholar 

  19. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657

    PubMed  Google Scholar 

  20. Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch 431(6):828–837

    CAS  PubMed  Google Scholar 

  21. Doerner JF, Hatt H, Ramsey IS (2011) Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J Gen Physiol 137(3):271–288

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Downes CPH, Hawkins PT, Stephens L (1989) Identification of the stimulated reaction in intact cells, its substrate supply and the metabolism of inositol phosphates. In: Michell HD, Drummond AH, Downes CP (eds) Inositol Lipids in Cell Signalling. Academic, London, pp 1–38

    Google Scholar 

  23. Estacion M, Sinkins WG, Schilling WP (2001) Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J Physiol 530(Pt 1):1–19

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Falkenburger BH, Jensen JB, Hille B (2010) Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells. J Gen Physiol 135(2):99–114

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Falkenburger BH, Dickson EJ, Hille B (2013) Quantitative properties and receptor reserve of the DAG and PKC branch of Gq-coupled receptor signaling. J Gen Physiol 141(5):537–555

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Fan Z, Makielski JC (1997) Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem 272(9):5388–5395

    CAS  PubMed  Google Scholar 

  27. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    CAS  PubMed  Google Scholar 

  28. Fujita F, Uchida K, Takaishi M, Sokabe T, Tominaga M (2013) Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci 33(14):6154–6159

    CAS  PubMed  Google Scholar 

  29. Gamper N, Rohacs T (2012) Phosphoinositide sensitivity of ion channels, a functional perspective. Subcell Biochem 59:289–333

    CAS  PubMed  Google Scholar 

  30. Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardo F, Plata C, Gaudet R, Vicente R, Valverde MA (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110:9553–9558

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Grycova L, Holendova B, Bumba L, Bily J, Jirku M, Lansky Z, Teisinger J (2012) Integrative binding sites within intracellular termini of TRPV1 receptor. PLoS One 7(10):e48437

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Gwanyanya A, Sipido KR, Vereecke J, Mubagwa K (2006) ATP and PIP2 dependence of the magnesium-inhibited, TRPM7-like cation channel in cardiac myocytes. Am J Physiol Cell Physiol 291(4):C627–C635

    CAS  PubMed  Google Scholar 

  33. Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF (2012) PI(4)P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337:727–730

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477(7365):495–498

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Hardie RC (2007) TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 578(Pt 1):9–24

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Heinz DW, Essen LO, Williams RL (1998) Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C. J Mol Biol 275(4):635–650

    CAS  PubMed  Google Scholar 

  37. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+-Ca2+ exchange and KATP potassium channels by PIP2. Science 273(5277):956–959

    CAS  PubMed  Google Scholar 

  38. Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001(111):re19

    CAS  PubMed  Google Scholar 

  39. Hilgemann DW (2012) Fitting K(V) potassium channels into the PIP2 puzzle: Hille group connects dots between illustrious HH groups. J Gen Physiol 140(3):245–248

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Hille B, Dickson EJ, Kruse M, Vivas O, & Suh BC (2014) Phosphoinositides regulate ion channels. Biochim Biophys Acta

  41. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391(6669):803–806

    CAS  PubMed  Google Scholar 

  42. Imai Y, Itsuki K, Okamura Y, Inoue R, Mori MX (2012) A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5)P2-diacylglycerol signalling. J Physiol 590(Pt 5):1101–1119

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Itsuki K, Imai Y, Okamura Y, Abe K, Inoue R, Mori MX (2012) Voltage-sensing phosphatase reveals temporal regulation of TRPC3/C6/C7 channels by membrane phosphoinositides. Channels (Austin) 6(3):206–209

    CAS  Google Scholar 

  44. Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX (2014) PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. J Gen Physiol 143(2):183–201

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Jeske NA, Por ED, Belugin S, Chaudhury S, Berg KA, Akopian AN, Henry MA, Gomez R (2011) A-kinase anchoring protein 150 mediates transient receptor potential family V type 1 sensitivity to phosphatidylinositol-4,5-bisphosphate. J Neurosci 31(23):8681–8688

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Kim AY, Tang Z, Liu Q, Patel KN, Maag D, Geng Y, Dong X (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133(3):475–485

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Kim D, Cavanaugh EJ, Simkin D (2008) Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate. Am J Physiol Cell Physiol 295(1):C92–C99

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Kim H, Jeon JP, Hong C, Kim J, Myeong J, Jeon JH, So I (2013) An essential role of PI(4,5)P2 for maintaining the activity of the transient receptor potential canonical (TRPC)4beta. Pflugers Arch 465:1011–1021

    CAS  PubMed  Google Scholar 

  49. Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE (2008) Determinants of molecular specificity in phosphoinositide regulation. Phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is the endogenous lipid regulating TRPV1. J Biol Chem 283(38):26208–26216

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17(10):3525–3537

    CAS  PubMed  Google Scholar 

  51. Krauter T, Ruppersberg JP, Baukrowitz T (2001) Phospholipids as modulators of KATP channels: distinct mechanisms for control of sensitivity to sulphonylureas, K+ channel openers, and ATP. Mol Pharmacol 59(5):1086–1093

    CAS  PubMed  Google Scholar 

  52. Kruse M, Hammond GR, Hille B (2012) Regulation of voltage-gated potassium channels by PI(4,5)P2. J Gen Physiol 140(2):189–205

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G (2007) ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42(4–5):427–438

    CAS  PubMed  Google Scholar 

  54. Lee J, Cha SK, Sun TJ, Huang CL (2005) PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol 126(5):439–451

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Lee SJ, Wang S, Borschel W, Heyman S, Gyore J, Nichols CG (2013) Secondary anionic phospholipid binding site and gating mechanism in Kir2.1 inward rectifier channels. Nat Commun 4:2786

    PubMed Central  PubMed  Google Scholar 

  56. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111

    CAS  PubMed  Google Scholar 

  57. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54(6):905–918

    CAS  PubMed  Google Scholar 

  59. Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25(7):1674–1681

    CAS  PubMed  Google Scholar 

  60. Liu B, Zhang C, Qin F (2005) Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 25(19):4835–4843

    CAS  PubMed  Google Scholar 

  61. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100(25):15160–15165

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, & Baki L (2015) Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 77:81–104

  63. Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE (2002) Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34(6):933–944

    CAS  PubMed  Google Scholar 

  64. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27(26):7070–7080

    CAS  PubMed  Google Scholar 

  65. Lukacs V, Rives JM, Sun X, Zakharian E, Rohacs T (2013) Promiscuous activation of transient receptor potential vanilloid 1 channels by negatively charged intracellular lipids, the key role of endogenous phosphoinositides in maintaining channel activity. J Biol Chem 288(49):35003–35013

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Lukacs V, Yudin Y, Hammond GR, Sharma E, Fukami K, Rohacs T (2013) Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons. J Neurosci 33(28):11451–11463

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Marius P, Alvis SJ, East JM, Lee AG (2005) The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids. Biophys J 89(6):4081–4089

    PubMed Central  CAS  PubMed  Google Scholar 

  68. McLaughlin S, Wang J, Gambhir A, Murray D (2002) PIP2 and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    CAS  PubMed  Google Scholar 

  69. McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438(7068):605–611

    CAS  PubMed  Google Scholar 

  70. Mercado J, Gordon-Shaag A, Zagotta WN, Gordon SE (2010) Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 30(40):13338–13347

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280(14):13424–13432

    CAS  PubMed  Google Scholar 

  72. Morales-Lazaro SL, Simon SA, Rosenbaum T (2013) The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). J Physiol 591(Pt 13):3109–3121

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Morales-Lazaro SL & Rosenbaum T (2014) A painful link between the TRPV1 channel and lysophosphatidic acid. Life Sci

  74. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435(7046):1239–1243

    CAS  PubMed  Google Scholar 

  75. Neely GG et al (2012) Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception. PLoS Genet 8(12):e1003071

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Nieto-Posadas A, Picazo-Juarez G, Llorente I, Jara-Oseguera A, Morales-Lazaro S, Escalante-Alcalde D, Islas LD, Rosenbaum T (2012) Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol 8(1):78–85

    CAS  Google Scholar 

  77. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25(3):467–478

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27(21):2809–2816

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 277(16):13375–13378

    CAS  PubMed  Google Scholar 

  80. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci U S A 100(13):8002–8006

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Ohtsuka T, Nishijima M, Akamatsu Y (1993) A somatic cell mutant defective in phosphatidylglycerophosphate synthase, with impaired phosphatidylglycerol and cardiolipin biosynthesis. J Biol Chem 268(30):22908–22913

    CAS  PubMed  Google Scholar 

  82. Okamura Y, Murata Y, Iwasaki H (2009) Voltage-sensing phosphatase: actions and potentials. J Physiol 587(Pt 3):513–520

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Patil MJ, Belugin S, Akopian AN (2011) Chronic alteration in phosphatidylinositol 4,5-biphosphate levels regulates capsaicin and mustard oil responses. J Neurosci Res 89(6):945–954

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Poblete H, Oyarzun I, Olivero P, Comer J, Zuniga M, Sepulveda RV, Baez-Nieto D, Gonzalez Leon C, Gonzalez-Nilo F, & Latorre R (2015) Molecular Determinants of Phosphatidylinositol 4,5Bisphosphate (PI(4,5)P2) Binding to Transient Receptor Potential V1 (TRPV1) Channels. J Biol Chem 290(4):2086–2098

  85. Poveda JA, Giudici AM, Renart ML, Molina ML, Montoya E, Fernandez-Carvajal A, Fernandez-Ballester G, Encinar JA, Gonzalez-Ros JM (2014) Lipid modulation of ion channels through specific binding sites. Biochim Biophys Acta 1838(6):1560–1567

    CAS  PubMed  Google Scholar 

  86. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300(5623):1284–1288

    CAS  PubMed  Google Scholar 

  87. Putney JW, Tomita T (2011) Phospholipase C signaling and calcium influx. Adv EnzymRegul 52:152–164

    Google Scholar 

  88. Raetz CR (1978) Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev 42(3):614–659

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80(4):1291–1335

    CAS  PubMed  Google Scholar 

  90. Rohacs T, Lopes C, Mirshahi T, Jin T, Zhang H, Logothetis DE (2002) Assaying phosphatidylinositol bisphosphate regulation of potassium channels. Methods Enzymol 345:71–92

    PubMed  Google Scholar 

  91. Rohacs T, Lopes CM, Jin T, Ramdya PP, Molnar Z, Logothetis DE (2003) Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci U S A 100(2):745–750

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8(5):626–634

    CAS  PubMed  Google Scholar 

  93. Rohacs T, Nilius B (2007) Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455(1):157–168

    CAS  PubMed  Google Scholar 

  94. Rohacs T, Thyagarajan B, Lukacs V (2008) Phospholipase C mediated modulation of TRPV1 channels. Mol Neurobiol 37(2–3):153–163

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Rohacs T (2009) Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium 45(6):554–565

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Rohacs T (2013) Regulation of transient receptor potential channels by the phospholipase C pathway. Adv Biol Regul 53(3):341–355

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Rohacs T (2014) Phosphoinositide regulation of TRP channels. Handb Exp Pharmacol 233:1143–1176

    Google Scholar 

  98. Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123(1):53–62

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Rosenhouse-Dantsker A, Logothetis DE (2007) Molecular characteristics of phosphoinositide binding. Pflugers Arch 455(1):45–53

    CAS  PubMed  Google Scholar 

  100. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4(5):329–336

    CAS  PubMed  Google Scholar 

  101. Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90(1):259–289

    CAS  PubMed  Google Scholar 

  102. Samways DS, Khakh BS, Egan TM (2008) Tunable calcium current through TRPV1 receptor channels. J Biol Chem 283(46):31274–31278

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Sanz-Salvador L, Andres-Borderia A, Ferrer-Montiel A, Planells-Cases R (2012) Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem 287(23):19462–19471

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Schmidt D, Jiang QX, MacKinnon R (2006) Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444(7120):775–779

    CAS  PubMed  Google Scholar 

  105. Senning EN, Collins MD, Stratiievska A, Ufret-Vincenty CA, Gordon SE (2014) Regulation of TRPV1 by phosphoinositide (4,5)-bisphosphate: role of membrane asymmetry. J Biol Chem 289(16):10999–11006

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Shumilina E, Klocker N, Korniychuk G, Rapedius M, Lang F, Baukrowitz T (2006) Cytoplasmic accumulation of long-chain coenzyme A esters activates KATP and inhibits Kir2.1 channels. J Physiol 575(Pt 2):433–442

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282(5391):1138–1141

    CAS  PubMed  Google Scholar 

  108. Sowa NA, Street SE, Vihko P, Zylka MJ (2010) Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci 30(31):10282–10293

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128(5):509–522

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Steinberg X, Lespay-Rebolledo C, Brauchi S (2014) A structural view of ligand-dependent activation in thermoTRP channels. Front Physiol 5:171

    PubMed Central  PubMed  Google Scholar 

  111. Suh BC, Inoue T, Meyer T, Hille B (2006) Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314(5804):1454–1457

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Sui JL, Petit-Jacques J, Logothetis DE (1998) Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci U S A 95(3):1307–1312

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Sun X & Zakharian E (2015) Regulation of the temperature-dependent activation of Transient Receptor Potential Vanilloid 1 by phospholipids in planar lipid bilayers. J Biol Chem in press

  115. Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51(2):159–212

    CAS  PubMed  Google Scholar 

  116. Takahashi N, Hamada-Nakahara S, Itoh Y, Takemura K, Shimada A, Ueda Y, Kitamata M, Matsuoka R, Hanawa-Suetsugu K, Senju Y, Mori MX, Kiyonaka S, Kohda D, Kitao A, Mori Y, Suetsugu S (2014) TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P2. Nat Commun 5:4994

    CAS  PubMed  Google Scholar 

  117. Thyagarajan B, Lukacs V, Rohacs T (2008) Hydrolysis of phosphatidylinositol 4,5-bisphosphate mediates calcium-induced inactivation of TRPV6 channels. J Biol Chem 283(22):14980–14987

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Thyagarajan B, Benn BS, Christakos S, Rohacs T (2009) Phospholipase C-mediated regulation of transient receptor potential vanilloid 6 channels: implications in active intestinal Ca2+ transport. Mol Pharmacol 75(3):608–616

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U S A 98(12):6951–6956

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Toth B, Csanady L (2012) Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc Natl Acad Sci U S A 109(33):13440–13445

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Toth BI, Vriens J, Ghosh D, Voets T (2014) Cellular regulation of transient receptor potential melastatin 3 (TRPM3) channel activity. Biophys J 106(2):334A

    Google Scholar 

  122. Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW Jr (2009) Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457(4):757–769

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Ufret-Vincenty CA, Klein RM, Hua L, Angueyra J, Gordon SE (2011) Localization of the PIP2 sensor of TRPV1 ion channels. J Biol Chem 286(11):9688–9698

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Vance JE, Steenbergen R (2005) Metabolism and functions of phosphatidylserine. Prog Lipid Res 44(4):207–234

    CAS  PubMed  Google Scholar 

  125. Varnai P, Thyagarajan B, Rohacs T, Balla T (2006) Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J Cell Biol 175(3):377–382

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534(Pt 3):813–825

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430(7001):748–754

    CAS  PubMed  Google Scholar 

  128. Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3(3):174–182

    CAS  PubMed  Google Scholar 

  129. White DA (1973) The phospholipid composition of mammalian tissues. In: Ansell GB, Hawthorne JN, Dawson RMC (eds) Form and function of phospholipids. Elseview, pp 441–482

  130. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147(1):199–208

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Woo DH, Jung SJ, Zhu MH, Park CK, Kim YH, Oh SB, Lee CJ (2008) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 4:42

    PubMed Central  PubMed  Google Scholar 

  132. Wright BD, Loo L, Street SE, Ma A, Taylor-Blake B, Stashko MA, Jin J, Janzen WP, Frye SV, Zylka MJ (2014) The lipid kinase PIP5K1C regulates pain signaling and sensitization. Neuron 82(4):836–847

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Xie J, Sun B, Du J, Yang W, Chen HC, Overton JD, Runnels LW, Yue L (2011) Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity. Sci Rep 1:146

    PubMed Central  PubMed  Google Scholar 

  134. Yao J, Qin F (2009) Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLoS Biol 7(2):e46

    PubMed  Google Scholar 

  135. Yu Y, Carter CR, Youssef N, Dyck JR, Light PE (2014) Intracellular long-chain acyl CoAs activate TRPV1 channels. PLoS One 9(5):e96597

    PubMed Central  PubMed  Google Scholar 

  136. Yudin Y, Lukacs V, Cao C, Rohacs T (2011) Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J Physiol 589(Pt 24):6007–6027

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Zakharian E, Cao C, Rohacs T (2011) Intracellular ATP supports TRPV6 activity via lipid kinases and the generation of PtdIns(4,5)P2. FASEB J 25(11):3915–3928

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1(3):183–188

    CAS  PubMed  Google Scholar 

  139. Zhang X, Huang J, McNaughton PA (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 24(24):4211–4223

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Zhang X, Li L, McNaughton PA (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59(3):450–461

    PubMed  Google Scholar 

  141. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280(47):39185–39192

    CAS  PubMed  Google Scholar 

  142. Zhong D, Blount P (2013) Phosphatidylinositol is crucial for the mechanosensitivity of Mycobacterium tuberculosis MscL. Biochemistry 52(32):5415–5420

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the author’s laboratory is supported by NIH grants NS055159 and GM093290.

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Rohacs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohacs, T. Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch - Eur J Physiol 467, 1851–1869 (2015). https://doi.org/10.1007/s00424-015-1695-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1695-3

Keywords

Navigation