Skip to main content

Advertisement

Log in

Urinary serine proteases and activation of ENaC in kidney—implications for physiological renal salt handling and hypertensive disorders with albuminuria

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Serine proteases, both soluble and cell-attached, can activate the epithelial sodium channel (ENaC) proteolytically through release of a putative 43-mer inhibitory tract from the ectodomain of the γ-subunit. ENaC controls renal Na+ excretion and loss-of-function mutations lead to low blood pressure, while gain-of-function mutations lead to impaired Na+ excretion, hypertension, and hypokalemia. We review an emerging pathophysiological concept that aberrant glomerular filtration of plasma proteases, e.g., plasmin, prostasin, and kallikrein, contributes to proteolytic activation of ENaC, both in acute conditions with proteinuria, like nephrotic syndrome and preeclampsia, and in chronic diseases, such as diabetes with microalbuminuria. A vast literature on renin-angiotensin-aldosterone system and volume homeostasis from the last four decades show a number of common characteristics for conditions with albuminuria compatible with impaired renal Na+ excretion: hypertension and volume retention is secondary to proteinuria in, e.g., preeclampsia and nephrotic syndrome; plasma concentrations of renin, angiotensin II, and aldosterone are frequently suppressed in proteinuric conditions, e.g., preeclampsia and diabetic nephropathy; blood pressure is salt-sensitive in conditions with microalbuminuria/proteinuria; and extracellular volume is expanded, plasma atrial natriuretic peptide (ANP) concentration is increased, and diuretics, like amiloride and spironolactone, are effective blood pressure-reducing add-ons. Active plasmin in urine has been demonstrated in diabetes, preeclampsia, and nephrosis. Urine from these patients activates, plasmin-dependently, amiloride-sensitive inward current in vitro. The concept predicts that patients with albuminuria may benefit particularly from reduced salt intake with RAS blockers; that distally acting diuretics, in particular amiloride, are warranted in low-renin/albuminuric conditions; and that urine serine proteases and their activators may be pharmacological targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O (1999) Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. J Clin Invest 103(5):667–673. doi:10.1172/jci5713

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Al-Ali NA, El-Sandabesee D, Steel SA, Roland JM (2007) Conn's syndrome in pregnancy successfully treated with amiloride. J Obstet Gynaecol J Inst Obstet Gynaecol 27(7):730–731. doi:10.1080/01443610701667098

    CAS  Google Scholar 

  3. Andersen RF, Buhl KB, Jensen BL, Svenningsen P, Friis UG, Jespersen B, Rittig S (2013) Remission of nephrotic syndrome diminishes urinary plasmin content and abolishes activation of ENaC. Pediatr Nephrol 28(8):1227–1234. doi:10.1007/s00467-013-2439-2

    PubMed  Google Scholar 

  4. Andreasen D, Vuagniaux G, Fowler-Jaeger N, Hummler E, Rossier BC (2006) Activation of epithelial sodium channels by mouse channel activating proteases (mCAP) expressed in Xenopus oocytes requires catalytic activity of mCAP3 and mCAP2 but not mCAP1. J Am Soc Nephrol JASN 17(4):968–976. doi:10.1681/ASN.2005060637

    CAS  Google Scholar 

  5. Aoi W, Niisato N, Sawabe Y, Miyazaki H, Tokuda S, Nishio K, Yoshikawa T, Marunaka Y (2007) Abnormal expression of ENaC and SGK1 mRNA induced by dietary sodium in Dahl salt-sensitively hypertensive rats. Cell Biol Int 31(10):1288–1291. doi:10.1016/j.cellbi.2007.03.036

    CAS  PubMed  Google Scholar 

  6. Atallah AN, Guimaraes JA, Gebara M, Sustovich DR, Martinez TR, Camano L (1988) Progesterone increases glomerular filtration rate, urinary kallikrein excretion and uric acid clearance in normal women. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al.] 21 (1):71–74

  7. August P, Lenz T, Ales KL, Druzin ML, Edersheim TG, Hutson JM, Muller FB, Laragh JH, Sealey JE (1990) Longitudinal study of the renin-angiotensin-aldosterone system in hypertensive pregnant women: deviations related to the development of superimposed preeclampsia. Am J Obstet Gynecol 163(5 Pt 1):1612–1621

    CAS  PubMed  Google Scholar 

  8. Bigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM (1994) Microalbuminuria in salt-sensitive patients. A marker for renal and cardiovascular risk factors. Hypertension 23(2):195–199

    CAS  PubMed  Google Scholar 

  9. Bize V, Horisberger JD (2007) Sodium self-inhibition of human epithelial sodium channel: selectivity and affinity of the extracellular sodium sensing site. Am J Physiol Renal Physiol 293(4):F1137–F1146. doi:10.1152/ajprenal.00100.2007

    CAS  PubMed  Google Scholar 

  10. Bojestig M, Nystrom FH, Arnqvist HJ, Ludvigsson J, Karlberg BE (2000) The renin-angiotensin-aldosterone system is suppressed in adults with type 1 diabetes. J Renin Angiotensin Aldosterone Syst JRAAS 1(4):353–356. doi:10.3317/jraas.2000.065

    CAS  Google Scholar 

  11. Bower D (1964) The influence of dietary salt intake on pre-eclampsia. J Obstet Gynaecol Br Commonw 71:123–125

    CAS  PubMed  Google Scholar 

  12. Brown E, Markandu N, Roulston J, Jones B, Squires M, MacGregor G (1982) Is the renin-angiotensin-aldosterone system involved in the sodium retention in the nephrotic syndrome? Nephron 32(2):102–107

    CAS  PubMed  Google Scholar 

  13. Brown MA, Gallery ED, Ross MR, Esber RP (1988) Sodium excretion in normal and hypertensive pregnancy: a prospective study. Am J Obstet Gynecol 159(2):297–307

    CAS  PubMed  Google Scholar 

  14. Brown MA, Nicholson E, Gallery ED (1988) Sodium-renin-aldosterone relations in normal and hypertensive pregnancy. Br J Obstet Gynaecol 95(12):1237–1246

    CAS  PubMed  Google Scholar 

  15. Brown MA, Reiter L, Rodger A, Whitworth JA (1994) Impaired renin stimulation in pre-eclampsia. Clin Sci 86(5):575–581

    CAS  PubMed  Google Scholar 

  16. Brown MA, Thou ST, Whitworth JA (1995) Stimulation of aldosterone by ACTH in normal and hypertensive pregnancy. Am J Hypertens 8(3):260–267. doi:10.1016/0895-7061(94)00213-U

    CAS  PubMed  Google Scholar 

  17. Brown MA, Wang J, Whitworth JA (1997) The renin-angiotensin-aldosterone system in pre-eclampsia. Clin Exp Hypertens 19(5–6):713–726

    CAS  PubMed  Google Scholar 

  18. Brown MA, Zammit VC, Adsett D (1990) Stimulation of active renin release in normal and hypertensive pregnancy. Clin Sci 79(5):505–511

    CAS  PubMed  Google Scholar 

  19. Brown MA, Zammit VC, Mitar DA, Whitworth JA (1992) Renin-aldosterone relationships in pregnancy-induced hypertension. Am J Hypertens 5(6 Pt 1):366–371

    CAS  PubMed  Google Scholar 

  20. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR (2007) Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J Biol Chem 282(9):6153–6160. doi:10.1074/jbc.M610636200

    CAS  PubMed  Google Scholar 

  21. Buhl KB, Friis UG, Svenningsen P, Gulaveerasingam A, Ovesen P, Frederiksen-Moller B, Jespersen B, Bistrup C, Jensen BL (2012) Urinary plasmin activates collecting duct ENaC current in preeclampsia. Hypertension 60(5):1346–1351. doi:10.1161/HYPERTENSIONAHA.112.198879

    CAS  PubMed  Google Scholar 

  22. Buhl KB, Oxlund CS, Friis UG, Svenningsen P, Bistrup C, Jacobsen IA, Jensen BL (2014) Plasmin in urine from patients with type 2 diabetes and treatment-resistant hypertension activates ENaC in vitro. J Hypertens 32(8):1672–1677. doi:10.1097/hjh.0000000000000216, discussion 1677

    CAS  PubMed  Google Scholar 

  23. Caldwell RA, Boucher RC, Stutts MJ (2004) Serine protease activation of near-silent epithelial Na+ channels. Am J Physiol Cell Physiol 286(1):C190–C194. doi:10.1152/ajpcell.00342.2003

    CAS  PubMed  Google Scholar 

  24. Caldwell RA, Boucher RC, Stutts MJ (2005) Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol 288(5):L813–L819. doi:10.1152/ajplung.00435.2004

    CAS  PubMed  Google Scholar 

  25. Canessa CM, Merillat AM, Rossier BC (1994) Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol 267(6 Pt 1):C1682–C1690

    CAS  PubMed  Google Scholar 

  26. Chen HF, Nakabayashi M, Satoh K, Sakamoto S (1980) Studies on the purification and characterization of human urinary plasminogen and plasmin. Thromb Haemost 42(5):1536–1547

    CAS  PubMed  Google Scholar 

  27. Chen HF, Nakabayashi M, Satoh K, Sakamoto S (1980) Urinary fibrinolysis in toxemia of pregnancy. Acta Obstet Gynecol Scand 59(6):499–504

    CAS  PubMed  Google Scholar 

  28. Chraibi A, Horisberger JD (2002) Na self inhibition of human epithelial Na channel: temperature dependence and effect of extracellular proteases. J Gen Physiol 120(2):133–145

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Cui Y, Wang W, Dong N, Lou J, Srinivasan DK, Cheng W, Huang X, Liu M, Fang C, Peng J, Chen S, Wu S, Liu Z, Dong L, Zhou Y, Wu Q (2012) Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature 484(7393):246–250. doi:10.1038/nature10897

    PubMed Central  CAS  PubMed  Google Scholar 

  30. de Seigneux S, Kim SW, Hemmingsen SC, Frokiaer J, Nielsen S (2006) Increased expression but not targeting of ENaC in adrenalectomized rats with PAN-induced nephrotic syndrome. Am J Physiol Renal Physiol 291(1):F208–F217. doi:10.1152/ajprenal.00399.2005

    PubMed  Google Scholar 

  31. Delemarre FM, van Leest LA, Jongsma HW, Steegers EA (2000) Effect of low-sodium diet on uteroplacental circulation. J Matern Fetal Med 9(4):197–200. doi:10.1002/1520-6661(200007/08)9:4<197::aid-mfm1>3.0.co;2-0

    CAS  PubMed  Google Scholar 

  32. Deruelle P, Dufour P, Magnenant E, Courouble N, Puech F (2004) Maternal Bartter's syndrome in pregnancy treated by amiloride. Eur J Obstet Gynecol Reprod Biol 115(1):106–107. doi:10.1016/j.ejogrb.2004.01.030

    PubMed  Google Scholar 

  33. Deschenes G, Doucet A (2000) Collecting duct (Na+/K+)-ATPase activity is correlated with urinary sodium excretion in rat nephrotic syndromes. J Am Soc Nephrol JASN 11(4):604–615

    CAS  Google Scholar 

  34. Deschenes G, Wittner M, Stefano A, Jounier S, Doucet A (2001) Collecting duct is a site of sodium retention in PAN nephrosis: a rationale for amiloride therapy. J Am Soc Nephrol JASN 12(3):598–601

    CAS  Google Scholar 

  35. Duley L, Henderson-Smart D (2000) Reduced salt intake compared to normal dietary salt, or high intake, in pregnancy. Cochrane Database Syst Rev 2:CD001687. doi:10.1002/14651858.cd001687

    PubMed  Google Scholar 

  36. Eide IK, Torjesen PA, Drolsum A, Babovic A, Lilledahl NP (2004) Low-renin status in therapy-resistant hypertension: a clue to efficient treatment. J Hypertens 22(11):2217–2226

    CAS  PubMed  Google Scholar 

  37. Ekinci EI, Clarke S, Thomas MC, Moran JL, Cheong K, MacIsaac RJ, Jerums G (2011) Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care 34(3):703–709. doi:10.2337/dc10-1723

    PubMed Central  PubMed  Google Scholar 

  38. El Moghrabi S, Houillier P, Picard N, Sohet F, Wootla B, Bloch-Faure M, Leviel F, Cheval L, Frische S, Meneton P, Eladari D, Chambrey R (2010) Tissue kallikrein permits early renal adaptation to potassium load. Proc Natl Acad Sci U S A 107(30):13526–13531. doi:10.1073/pnas.0913070107

    PubMed Central  PubMed  Google Scholar 

  39. Elebute OA, Mills IH (1976) Urinary kallikrein in normal and hypertensive pregnancies. Perspect Nephrol Hypertens 5:329–338

    CAS  PubMed  Google Scholar 

  40. Farese S, Shojaati K, Kadereit B, Frey FJ, Mohaupt MG (2006) Blood pressure reduction in pregnancy by sodium chloride. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 21(7):1984–1987. doi:10.1093/ndt/gfl106

    Google Scholar 

  41. Feldt-Rasmussen B, Mathiesen ER, Deckert T, Giese J, Christensen NJ, Bent-Hansen L, Nielsen MD (1987) Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30(8):610–617

    CAS  PubMed  Google Scholar 

  42. Fila M, Brideau G, Morla L, Cheval L, Deschenes G, Doucet A (2011) Inhibition of K+ secretion in the distal nephron in nephrotic syndrome: possible role of albuminuria. J Physiol 589(Pt 14):3611–3621. doi:10.1113/jphysiol.2011.209692

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A 93(26):15370–15375

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Frateschi S, Keppner A, Malsure S, Iwaszkiewicz J, Sergi C, Merillat AM, Fowler-Jaeger N, Randrianarison N, Planes C, Hummler E (2012) Mutations of the serine protease CAP1/Prss8 lead to reduced embryonic viability, skin defects, and decreased ENaC activity. Am J Pathol 181(2):605–615. doi:10.1016/j.ajpath.2012.05.007

    CAS  PubMed  Google Scholar 

  45. Frindt G, Ergonul Z, Palmer LG (2008) Surface expression of epithelial Na channel protein in rat kidney. J GEn Physiol 131(6):617–627. doi:10.1085/jgp.200809989

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Fu YY, Gao WL, Chen M, Chai KX, Wang YL, Chen LM (2010) Prostasin regulates human placental trophoblast cell proliferation via the epidermal growth factor receptor signaling pathway. Hum Reprod 25(3):623–632. doi:10.1093/humrep/dep457

    CAS  PubMed  Google Scholar 

  47. Gambling L, Dunford S, Wilson CA, McArdle HJ, Baines DL (2004) Estrogen and progesterone regulate alpha, beta, and gammaENaC subunit mRNA levels in female rat kidney. Kidney Int 65(5):1774–1781. doi:10.1111/j.1523-1755.2004.00593.x

    CAS  PubMed  Google Scholar 

  48. Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77(2):359–396

    CAS  PubMed  Google Scholar 

  49. Gurgoze MK, Gunduz Z, Poyrazoglu MH, Dursun I, Uzum K, Dusunsel R (2011) Role of sodium during formation of edema in children with nephrotic syndrome. Pediatr Int 53(1):50–56

    CAS  PubMed  Google Scholar 

  50. Haerteis S, Krappitz A, Krappitz M, Murphy JE, Bertog M, Krueger B, Nacken R, Chung H, Hollenberg MD, Knecht W, Bunnett NW, Korbmacher C (2014) Proteolytic activation of the human epithelial sodium channel by trypsin IV and trypsin I involves distinct cleavage sites. J Biol Chem 289(27):19067–19078. doi:10.1074/jbc.M113.538470

    CAS  PubMed  Google Scholar 

  51. Haerteis S, Krappitz M, Diakov A, Krappitz A, Rauh R, Korbmacher C (2012) Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the gamma subunit of the human epithelial sodium channel. The gen Physiol 140(4):375–389. doi:10.1085/jgp.201110763

    CAS  Google Scholar 

  52. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP (1995) Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 11(1):76–82. doi:10.1038/ng0995-76

    CAS  PubMed  Google Scholar 

  53. Hommel E, Mathiesen ER, Giese J, Nielsen MD, Schutten HJ, Parving HH (1989) On the pathogenesis of arterial blood pressure elevation early in the course of diabetic nephropathy. Scand J Clin Lab Invest 49(6):537–544

    CAS  PubMed  Google Scholar 

  54. Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR (2004) Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem 279(18):18111–18114. doi:10.1074/jbc.C400080200

    CAS  PubMed  Google Scholar 

  55. Hughey RP, Bruns JB, Kinlough CL, Kleyman TR (2004) Distinct pools of epithelial sodium channels are expressed at the plasma membrane. J Biol Chem 279(47):48491–48494. doi:10.1074/jbc.C400460200

    CAS  PubMed  Google Scholar 

  56. Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, Carattino MD, Kleyman TR (2003) Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J Biol Chem 278(39):37073–37082. doi:10.1074/jbc.M307003200

    CAS  PubMed  Google Scholar 

  57. Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL, Lechene CP, Brenner BM (1983) Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest 71(1):91–103

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Jeunemaitre X, Bassilana F, Persu A, Dumont C, Champigny G, Lazdunski M, Corvol P, Barbry P (1997) Genotype-phenotype analysis of a newly discovered family with Liddle's syndrome. J Hypertens 15(10):1091–1100

    CAS  PubMed  Google Scholar 

  59. Kakizoe Y, Kitamura K, Ko T, Wakida N, Maekawa A, Miyoshi T, Shiraishi N, Adachi M, Zhang Z, Masilamani S, Tomita K (2009) Aberrant ENaC activation in Dahl salt-sensitive rats. J Hypertens 27(8):1679–1689. doi:10.1097/HJH.0b013e32832c7d23

    CAS  PubMed  Google Scholar 

  60. Karlberg BE, Ryden G, Wichman K (1984) Changes in the renin-angiotensin-aldosterone and kallikrein-kinin systems during normal and hypertensive pregnancy. Acta Obstet Gynecol Scand Suppl 118:17–24

    CAS  PubMed  Google Scholar 

  61. Karlberg BE, Wichman K (1984) Hypertension in pregnancy. Prostaglandins, kinins and kallikrein. Scand J Clin Lab Investig Suppl 169:39–47

    CAS  Google Scholar 

  62. Khedun SM, Naicker T, Moodley J, Naidoo S (1999) Urinary tissue kallikrein excretion in black African women with severe pre-eclampsia. Acta Obstet Gynecol Scand 78(4):316–320

    CAS  PubMed  Google Scholar 

  63. Kovatz S, Arber I, Korzets Z, Rathaus M, Ben Aderet N, Bernheim J (1985) Urinary kallikrein in normal pregnancy, pregnancy with hypertension, and toxemia. Nephron 40(1):48–51

    CAS  PubMed  Google Scholar 

  64. Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR (1985) The changing natural history of nephropathy in type I diabetes. Am J Med 78(5):785–794

    CAS  PubMed  Google Scholar 

  65. Kyle PM, Campbell S, Buckley D, Kissane J, de Swiet M, Albano J, Millar JG, Redman CW (1996) A comparison of the inactive urinary kallikrein:creatinine ratio and the angiotensin sensitivity test for the prediction of pre-eclampsia. Br J Obstet Gynaecol 103(10):981–987

    CAS  PubMed  Google Scholar 

  66. Lambiotte-Escoffier C, Moore DB, Taylor HC Jr (1953) The volume of distribution of inulin, antipyrine, and radiosodium during normal and toxemic pregnancy and during the puerperium. Am J Obstet Gynecol 66(1):18–26

    CAS  PubMed  Google Scholar 

  67. Levario-Carrillo M, Avitia M, Tufino-Olivares E, Trevizo E, Corral-Terrazas M, Reza-Lopez S (2006) Body composition of patients with hypertensive complications during pregnancy. Hypertens Pregnancy Off J Int Soc Study Hypertens Pregnancy 25(3):259–269. doi:10.1080/10641950600913032

    Google Scholar 

  68. Leyvraz C, Charles RP, Rubera I, Guitard M, Rotman S, Breiden B, Sandhoff K, Hummler E (2005) The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol 170(3):487–496. doi:10.1083/jcb.200501038

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Lin HY, Zhang H, Yang Q, Wang HX, Wang HM, Chai KX, Chen LM, Zhu C (2006) Expression of prostasin and protease nexin-1 in rhesus monkey (Macaca mulatta) endometrium and placenta during early pregnancy. J Histochem Cytochem Off J Histochem Soc 54(10):1139–1147. doi:10.1369/jhc.6A7005.2006

    CAS  Google Scholar 

  70. Liu L, Hering-Smith KS, Schiro FR, Hamm LL (2002) Serine protease activity in m-1 cortical collecting duct cells. Hypertension 39(4):860–864

    CAS  PubMed  Google Scholar 

  71. Lourdel S, Loffing J, Favre G, Paulais M, Nissant A, Fakitsas P, Creminon C, Feraille E, Verrey F, Teulon J, Doucet A, Deschenes G (2005) Hyperaldosteronemia and activation of the epithelial sodium channel are not required for sodium retention in puromycin-induced nephrosis. J Am Soc Nephrol: JASN 16(12):3642–3650. doi:10.1681/asn.2005040363

    CAS  PubMed  Google Scholar 

  72. Macfarlane RG, Pilling J (1947) Fibrinolytic activity of normal urine. Nature 159(4049):779

    CAS  PubMed  Google Scholar 

  73. MacGillivray I, Buchanan T (1958) Total exchangeable sodium and potassium in non-pregnant women and in normal and pre-eclamptic pregnancy. Lancet 272(7056):1090–1093

    Google Scholar 

  74. Maekawa A, Kakizoe Y, Miyoshi T, Wakida N, Ko T, Shiraishi N, Adachi M, Tomita K, Kitamura K (2009) Camostat mesilate inhibits prostasin activity and reduces blood pressure and renal injury in salt-sensitive hypertension. J Hypertens 27(1):181–189

    CAS  PubMed  Google Scholar 

  75. Makino H, Onbe T, Kumagai I, Murakami K, Ota Z (1991) A proteinase inhibitor reduces proteinuria in nephrotic syndrome. Am J Nephrol 11(2):164–165

    CAS  PubMed  Google Scholar 

  76. Malsure S, Wang Q, Charles RP, Sergi C, Perrier R, Christensen BM, Maillard M, Rossier BC, Hummler E (2014) Colon-specific deletion of epithelial sodium channel causes sodium loss and aldosterone resistance. J Am Soc Nephrol: JASN 25(7):1453–1464. doi:10.1681/asn.2013090936

    CAS  PubMed  Google Scholar 

  77. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104(7):R19–R23. doi:10.1172/jci7840

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Matsubara M, Taguma Y, Kurosawa K, Hotta O, Suzuki K, Futaki G (1989) Effect of camostat mesilate on heavy proteinuria in various nephropathies. Clin Nephrol 32(3):119–123

    CAS  PubMed  Google Scholar 

  79. Matsubara M, Taguma Y, Kurosawa K, Hotta O, Suzuki K, Ishizaki M (1990) Effect of camostat mesilate for the treatment of advanced diabetic nephropathy. J Lab Clin Med 116(2):206–210

    CAS  PubMed  Google Scholar 

  80. McMahon EJ, Bauer JD, Hawley CM, Isbel NM, Stowasser M, Johnson DW, Campbell KL (2013) A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol: JASN 24(12):2096–2103. doi:10.1681/asn.2013030285

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Millar JG, Campbell SK, Albano JD, Higgins BR, Clark AD (1996) Early prediction of pre-eclampsia by measurement of kallikrein and creatinine on a random urine sample. Br J Obstet Gynaecol 103(5):421–426

    CAS  PubMed  Google Scholar 

  82. Mutoh S, Kobayashi M, Hirata J, Itoh N, Maki M, Komatsu Y, Yoshida A, Sasa H, Kuroda K, Kikuchi Y et al (1992) Urinary coagulation-fibrinolysis, kallirein-kinin systems and kininase in cases of preclampsia. Agents Actions Suppl 38(Pt 2):330–341

    PubMed  Google Scholar 

  83. Nakada T, Koike H, Akiya T, Katayama T, Kawamata S, Takaya K, Shigematsu H (1987) Liddle's syndrome, an uncommon form of hyporeninemic hypoaldosteronism: functional and histopathological studies. J Urol 137(4):636–640

    CAS  PubMed  Google Scholar 

  84. Narikiyo T, Kitamura K, Adachi M, Miyoshi T, Iwashita K, Shiraishi N, Nonoguchi H, Chen LM, Chai KX, Chao J, Tomita K (2002) Regulation of prostasin by aldosterone in the kidney. J Clin Invest 109(3):401–408. doi:10.1172/JCI13229

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Navarrete M, Ho J, Krokhin O, Ezzati P, Rigatto C, Reslerova M, Rush DN, Nickerson P, Wilkins JA (2013) Proteomic characterization of serine hydrolase activity and composition in normal urine. Clin Proteomics 10(1):17. doi:10.1186/1559-0275-10-17

    PubMed Central  PubMed  Google Scholar 

  86. O'Hare JA, Ferriss JB, Brady D, Twomey B, O'Sullivan DJ (1985) Exchangeable sodium and renin in hypertensive diabetic patients with and without nephropathy. Hypertension 7(6 Pt 2):II43

    PubMed  Google Scholar 

  87. O'Hare JP, Anderson JV, Millar ND, Bloom SR, Corrall RJ (1988) The relationship of the renin-angiotensin-aldosterone system to atrial natriuretic peptide and the natriuresis of volume expansion in diabetics with and without proteinuria. Postgrad Med J 64(Suppl 3):35–38, discussion 48–39

    PubMed  Google Scholar 

  88. O'Hare JP, Anderson JV, Millar ND, Dalton N, Tymms DJ, Bloom SR, Corrall RJ (1989) Hormonal response to blood volume expansion in diabetic subjects with and without autonomic neuropathy. Clin Endocrinol 30(5):571–579

    Google Scholar 

  89. O'Hare JP, Roland JM, Walters G, Corrall RJ (1986) Impaired sodium excretion in response to volume expansion induced by water immersion in insulin-dependent diabetes mellitus. Clin Sci 71(4):403–409

    PubMed  Google Scholar 

  90. Olivieri O, Castagna A, Guarini P, Chiecchi L, Sabaini G, Pizzolo F, Corrocher R, Righetti PG (2005) Urinary prostasin: a candidate marker of epithelial sodium channel activation in humans. Hypertension 46(4):683–688. doi:10.1161/01.HYP.0000184108.12155.6b

    CAS  PubMed  Google Scholar 

  91. Olivieri O, Chiecchi L, Pizzolo F, Castagna A, Raffaelli R, Gunasekaran M, Guarini P, Consoli L, Salvagno G, Kitamura K (2013) Urinary prostasin in normotensive individuals: correlation with the aldosterone to renin ratio and urinary sodium. Hypertens Res: Off J Jpn Soc Hypertens 36(6):528–533. doi:10.1038/hr.2012.232

    CAS  Google Scholar 

  92. Olofsson P, Astedt B (1994) Renal function and urinary urokinase in hypertensive and diabetic pregnancies. J Perinat Med 22(3):181–188

    CAS  PubMed  Google Scholar 

  93. Onbe T, Makino H, Kumagai I, Haramoto T, Murakami K, Ota Z (1991) Effect of proteinase inhibitor camostat mesilate on nephrotic syndrome with diabetic nephropathy. J Diabet Complicat 5(2–3):167–168

    CAS  Google Scholar 

  94. Oxlund CS, Henriksen JE, Tarnow L, Schousboe K, Gram J, Jacobsen IA (2013) Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus: a double blind randomized clinical trial. J Hypertens 31(10):2094–2102. doi:10.1097/HJH.0b013e3283638b1a

    CAS  PubMed  Google Scholar 

  95. Palmer LG, Patel A, Frindt G (2012) Regulation and dysregulation of epithelial Na+ channels. Clin Exp Nephrol 16(1):35–43. doi:10.1007/s10157-011-0496-z

    CAS  PubMed  Google Scholar 

  96. Passero CJ, Mueller GM, Myerburg MM, Carattino MD, Hughey RP, Kleyman TR (2012) TMPRSS4-dependent activation of the epithelial sodium channel requires cleavage of the gamma-subunit distal to the furin cleavage site. Am J Physiol Renal Physiol 302(1):F1–F8. doi:10.1152/ajprenal.00330.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Passero CJ, Mueller GM, Rondon-Berrios H, Tofovic SP, Hughey RP, Kleyman TR (2008) Plasmin activates epithelial Na+ channels by cleaving the gamma subunit. J Biol Chem 283(52):36586–36591. doi:10.1074/jbc.M805676200

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Patel AB, Chao J, Palmer LG (2012) Tissue kallikrein activation of the epithelial Na channel. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00133.2012

    Google Scholar 

  99. Pedersen EB, Christensen NJ, Christensen P, Johannesen P, Kornerup HJ, Kristensen S, Lauritsen JG, Leyssac PP, Rasmussen A, Wohlert M (1983) Preeclampsia—a state of prostaglandin deficiency? Urinary prostaglandin excretion, the renin-aldosterone system, and circulating catecholamines in preeclampsia. Hypertension 5(1):105–111

    CAS  PubMed  Google Scholar 

  100. Pedersen EB, Christensen NJ, Christensen P, Johannesen P, Kornerup HJ, Kristensen S, Lauritsen JG, Leyssac PP, Rasmussen AB, Wohlert M (1982) Prostaglandins, catecholamines, renin and aldosterone during hypertensive and normotensive pregnancy. Clin Exp Hypertens A Theory Pract 4(9–10):1453–1467

    CAS  Google Scholar 

  101. Peters DE, Szabo R, Friis S, Shylo NA, Uzzun Sales K, Holmbeck K, Bugge TH (2014) The membrane-anchored serine protease prostasin (CAP1/PRSS8) supports epidermal development and postnatal homeostasis independent of its enzymatic activity. J Biol Chem 289(21):14740–14749. doi:10.1074/jbc.M113.541318

    CAS  PubMed  Google Scholar 

  102. Picard N, Eladari D, El Moghrabi S, Planes C, Bourgeois S, Houillier P, Wang Q, Burnier M, Deschenes G, Knepper MA, Meneton P, Chambrey R (2008) Defective ENaC processing and function in tissue kallikrein-deficient mice. J Biol Chem 283(8):4602–4611. doi:10.1074/jbc.M705664200

    CAS  PubMed  Google Scholar 

  103. Planes C, Randrianarison NH, Charles RP, Frateschi S, Cluzeaud F, Vuagniaux G, Soler P, Clerici C, Rossier BC, Hummler E (2010) ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1. EMBO Mol Med 2(1):26–37. doi:10.1002/emmm.200900050

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Platts JK, Meadows P, Jones R, Harvey JN (2000) The relation between tissue kallikrein excretion rate, aldosterone and glomerular filtration rate in human pregnancy. BJOG : Int J Obstet Gynaecol 107(2):278–281

    CAS  Google Scholar 

  105. Pool MO, Gans RO, Donker AJ (1990) Treatment of intractable chyluria by stripping of the kidneys. N Engl J Med 323(8):552–553

    CAS  PubMed  Google Scholar 

  106. Robinson M (1958) Salt in pregnancy. Lancet 1(7013):178–181

    CAS  PubMed  Google Scholar 

  107. Rodriguez JA, Biglieri EG, Schambelan M (1981) Pseudohyperaldosteronism with renal tubular resistance to mineralocorticoid hormones. Trans Assoc Am Phys 94:172–182

    CAS  PubMed  Google Scholar 

  108. Roland JM, O'Hare JP, Walters G, Corrall RJ (1986) Sodium retention in response to saline infusion in uncomplicated diabetes mellitus. Diabetes Res (Edinburgh, Scotland) 3(4):213–215

    CAS  Google Scholar 

  109. Rossier BC (2014) Epithelial sodium channel (ENaC) and the control of blood pressure. Curr Opin Pharmacol 15:33–46. doi:10.1016/j.coph.2013.11.010

    CAS  PubMed  Google Scholar 

  110. Rossier BC, Staub O, Hummler E (2013) Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett 587(13):1929–1941. doi:10.1016/j.febslet.2013.05.013

    CAS  PubMed  Google Scholar 

  111. Saha C, Eckert GJ, Ambrosius WT, Chun TY, Wagner MA, Zhao Q, Pratt JH (2005) Improvement in blood pressure with inhibition of the epithelial sodium channel in blacks with hypertension. Hypertension 46(3):481–487. doi:10.1161/01.HYP.0000179582.42830.1d

    CAS  PubMed  Google Scholar 

  112. Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR (2006) Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. Am J Physiol Renal Physiol 290(6):F1488–F1496. doi:10.1152/ajprenal.00439.2005

    CAS  PubMed  Google Scholar 

  113. Shi S, Carattino MD, Hughey RP, Kleyman TR (2013) ENaC regulation by proteases and shear stress. Curr Mol Pharmacol 6(1):28–34

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW et al (1994) Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79(3):407–414

    CAS  PubMed  Google Scholar 

  115. Shojaati K, Causevic M, Kadereit B, Dick B, Imobersteg J, Schneider H, Beinder E, Kashiwagi M, Frey BM, Frey FJ, Mohaupt MG (2004) Evidence for compromised aldosterone synthase enzyme activity in preeclampsia. Kidney Int 66(6):2322–2328. doi:10.1111/j.1523-1755.2004.66031.x

    CAS  PubMed  Google Scholar 

  116. Snyder PM, McDonald FJ, Stokes JB, Welsh MJ (1994) Membrane topology of the amiloride-sensitive epithelial sodium channel. J Biol Chem 269(39):24379–24383

    CAS  PubMed  Google Scholar 

  117. Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ (1995) Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83(6):969–978

    CAS  PubMed  Google Scholar 

  118. Spacek DV, Perez AF, Ferranti KM, Wu LK, Moy DM, Magnan DR, King TR (2010) The mouse frizzy (fr) and rat 'hairless' (frCR) mutations are natural variants of protease serine S1 family member 8 (Prss8). Exp Dermatol 19(6):527–532. doi:10.1111/j.1600-0625.2009.01054.x

    CAS  PubMed  Google Scholar 

  119. Steensgaard M, Svenningsen P, Tinning AR, Nielsen TD, Jorgensen F, Kjaersgaard G, Madsen K, Jensen BL (2010) Apical serine protease activity is necessary for assembly of a high-resistance renal collecting duct epithelium. Acta Physiol (Oxf) 200(4):347–359. doi:10.1111/j.1748-1716.2010.02170.x

    CAS  Google Scholar 

  120. Strojek K, Grzeszczak W, Lacka B, Gorska J, Keller CK, Ritz E (1995) Increased prevalence of salt sensitivity of blood pressure in IDDM with and without microalbuminuria. Diabetologia 38(12):1443–1448

    CAS  PubMed  Google Scholar 

  121. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O (2009) Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol : JASN 20(2):299–310. doi:10.1681/asn.2008040364

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Svenningsen P, Skott O, Jensen BL (2012) Proteinuric diseases with sodium retention: is plasmin the link? Clin Exp Pharmacol Physiol 39(1):117–124. doi:10.1111/j.1440-1681.2011.05524.x

    CAS  PubMed  Google Scholar 

  123. Svenningsen P, Uhrenholt TR, Palarasah Y, Skjodt K, Jensen BL, Skott O (2009) Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations. Am J Physiol Regul Integr Comp Physiol 297(6):R1733–R1741. doi:10.1152/ajpregu.00321.2009

    CAS  PubMed  Google Scholar 

  124. Szabo R, Hobson JP, Christoph K, Kosa P, List K, Bugge TH (2009) Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development 136(15):2653–2663. doi:10.1242/dev.038430

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Szabo R, Molinolo A, List K, Bugge TH (2007) Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene 26(11):1546–1556. doi:10.1038/sj.onc.1209966

    CAS  PubMed  Google Scholar 

  126. Szabo R, Uzzun Sales K, Kosa P, Shylo NA, Godiksen S, Hansen KK, Friis S, Gutkind JS, Vogel LK, Hummler E, Camerer E, Bugge TH (2012) Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation. PLoS Genet 8(8):e1002937. doi:10.1371/journal.pgen.1002937

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Thomas MC, Moran J, Forsblom C, Harjutsalo V, Thorn L, Ahola A, Waden J, Tolonen N, Saraheimo M, Gordin D, Groop PH (2011) The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34(4):861–866. doi:10.2337/dc10-1722

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Todkar A, Di Chiara M, Loffing-Cueni D, Bettoni C, Mohaupt M, Loffing J, Wagner CA (2012) Aldosterone deficiency adversely affects pregnancy outcome in mice. Pflugers Archiv : Eur J Physiol 464(4):331–343. doi:10.1007/s00424-012-1145-4

    CAS  Google Scholar 

  129. Uchimura K, Hayata M, Mizumoto T, Miyasato Y, Kakizoe Y, Morinaga J, Onoue T, Yamazoe R, Ueda M, Adachi M, Miyoshi T, Shiraishi N, Ogawa W, Fukuda K, Kondo T, Matsumura T, Araki E, Tomita K, Kitamura K (2014) The serine protease prostasin regulates hepatic insulin sensitivity by modulating TLR4 signalling. Nat Commun 5:3428. doi:10.1038/ncomms4428

    PubMed Central  PubMed  Google Scholar 

  130. Uchimura K, Kakizoe Y, Onoue T, Hayata M, Morinaga J, Yamazoe R, Ueda M, Mizumoto T, Adachi M, Miyoshi T, Shiraishi N, Sakai Y, Tomita K, Kitamura K (2012) In vivo contribution of serine proteases to the proteolytic activation of gammaENaC in aldosterone-infused rats. Am J Physiol Renal Physiol 303(7):F939–F943. doi:10.1152/ajprenal.00705.2011

    CAS  PubMed  Google Scholar 

  131. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389(6651):607–610. doi:10.1038/39329

    CAS  PubMed  Google Scholar 

  132. Vande Walle JG, Donckerwolcke RA, van Isselt JW, Derkx FH, Joles JA, Koomans HA (1995) Volume regulation in children with early relapse of minimal-change nephrosis with or without hypovolaemic symptoms. Lancet 346(8968):148–152

    CAS  PubMed  Google Scholar 

  133. Vassalli JD, Belin D (1987) Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett 214(1):187–191

    CAS  PubMed  Google Scholar 

  134. Vaziri ND, Gonzales EC, Shayestehfar B, Barton CH (1994) Plasma levels and urinary excretion of fibrinolytic and protease inhibitory proteins in nephrotic syndrome. J Clin Med 124(1):118–124

    CAS  Google Scholar 

  135. Vogt B, Favre H (1991) Na+, K(+)-ATPase activity and hormones in single nephron segments from nephrotic rats. Clin Sci 80(6):599–604

    CAS  PubMed  Google Scholar 

  136. Wang C, Chan TK, Yeung RT, Coghlan JP, Scoggins BA, Stockigt JR (1981) The effect of triamterene and sodium intake on renin, aldosterone, and erythrocyte sodium transport in Liddle's syndrome. J Clin Endocrinol Metab 52(5):1027–1032. doi:10.1210/jcem-52-5-1027

    CAS  PubMed  Google Scholar 

  137. Wang YB, Leroy V, Maunsbach AB, Doucet A, Hasler U, Dizin E, Ernandez T, de Seigneux S, Martin PY, Feraille E (2014) Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na, K-ATPase in collecting duct principal cells. J Am Soc Nephro JASN 25(2):250–259. doi:10.1681/ASN.2013040429

    CAS  Google Scholar 

  138. West C, Zhang Z, Ecker G, Masilamani SM (2010) Increased renal alpha-epithelial sodium channel (ENAC) protein and increased ENAC activity in normal pregnancy. Am J Physiol Regul Integr Comp Physiol 299(5):R1326–R1332. doi:10.1152/ajpregu.00082.2010

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Zachar RM, Skjodt K, Marcussen N, Walter S, Toft A, Nielsen MR, Jensen BL, Svenningsen P (2014) The epithelial sodium channel gamma-subunit is processed proteolytically in human kidney. J Am Soc Nephrol JASN. doi:10.1681/ASN.2013111173

    Google Scholar 

Download references

Acknowledgments

Research in the authors’ lab has been supported by the following sources: The Strategic Research Council (Danish Innovation Foundation), The Danish Research Council for Independent Research - Health Sciences, The Danish Heart Foundation, The Danish Kidney Association, Helen and Ejnar Bjørnow’s Foundation, Odense University Hospital, the Lundbeck Foundation, and The Region of Southern Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boye L. Jensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svenningsen, P., Andersen, H., Nielsen, L.H. et al. Urinary serine proteases and activation of ENaC in kidney—implications for physiological renal salt handling and hypertensive disorders with albuminuria. Pflugers Arch - Eur J Physiol 467, 531–542 (2015). https://doi.org/10.1007/s00424-014-1661-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1661-5

Keywords

Navigation