Skip to main content

Advertisement

Log in

A role for transcription factor glial cell missing 2 in Ca2+ homeostasis in zebrafish, Danio rerio

  • Molecular and genomic physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The present study investigated the role of the transcription factor, glial cell missing 2 (gcm2), in Ca2+ regulation in zebrafish larvae. Translational gene knockdown of gcm2 decreased Ca2+ uptake and the density of ionocytes expressing the epithelial Ca2+ channel (ecac), and disrupted the overall Ca2+ balance. Ca2+ uptake and the expression of gcm2 messenger RNA (mRNA) were significantly elevated in larvae acclimated to low Ca2+ water (25 μM); the stimulation of Ca2+ uptake was not observed in fish experiencing gcm2 knockdown. Acclimation to acidic water (pH 4) significantly reduced whole-body Ca2+ content owing to reduced Ca2+ uptake and increased Ca2+ efflux. However, ecac mRNA levels and the density of ecac-expressing ionocytes were increased in fish acclimated to acidic water, and maximal Ca2+ uptake capacity (J MAX) was significantly increased when measured in control water (pH ~7.4). Acclimation of larvae to acidic water significantly increased gcm2 mRNA expression, and in gcm2 morphants, no such stimulation in Ca2+ uptake was observed after their return to control water. Overexpression of gcm2 mRNA resulted in a significant increase in the numbers of ecac-expressing ionocytes and Ca2+ uptake. These observations reveal a critical role for gcm2 in Ca2+ homeostasis in zebrafish larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bayaa M, Vulesevic B, Esbaugh A, Braun M, Ekker ME, Grosell M, Perry SF (2009) The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. J Exp Biol 212(20):3283–3295. doi:10.1242/jeb.033910

    Article  CAS  PubMed  Google Scholar 

  2. Busby ER, Roch GJ, Sherwood NM (2010) Endocrinology of zebrafish: a small fish with a large gene pool. In Zebrafish Perry, D, Ekker, M, Farrell, AP and Brauner, CJ (eds.) eries in Fish Physiology, vol 29. Academic Press, pp 173-247

  3. Canaff L, Zhou X, Mosesova I, Cole DEC, Hendy GN (2009) Glial Cells Missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 30(1):85–92. doi:10.1002/humu.20827

    Article  CAS  PubMed  Google Scholar 

  4. Chang W-J, Horng J-L, Yan J-J, Hsiao C-D, Hwang P-P (2009) The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). Amer J Physiol - Regul, Integr Comp Physiol 296(4):R1192–R1201. doi:10.1152/ajpregu.90973.2008

    Article  CAS  Google Scholar 

  5. Cruz SA, Chao P-L, Hwang P-P (2013) Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comp Biochem Physiol Part A 164(1):249–257. doi:10.1016/j.cbpa.2012.09.011

    Article  CAS  Google Scholar 

  6. Cruz SA, Lin C-H, Chao P-L, Hwang P-P (2013) Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish, Danio rerio. PLoS ONE 8(10):e77997. doi:10.1371/journal.pone.0077997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dymowska AK, Hwang P-P, Goss GG (2012) Structure and function of ionocytes in the freshwater fish gill. Resp Physiol & Neurobiol 184(3):282–292. doi:10.1016/j.resp.2012.08.025

    Article  CAS  Google Scholar 

  8. Esaki M, Hoshijima K, Kobayashi S, Fukuda H, Kawakami K, Hirose S (2007) Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Amer J Physiol - Regul, Integr Comp Physiol 292(1):R470–R480

    Article  CAS  Google Scholar 

  9. Esaki M, Hoshijima K, Nakamura N, Munakata K, Tanaka M, Ookata K, Asakawa K, Kawakami K, Wang W, Weinberg ES, Hirose S (2009) Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae. Dev Biol 329(1):116–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Flik G, Perry SF (1989) Cortisol stimulates whole body calcium uptake and the branchial calcium pump in freshwater rainbow trout. J Endocrinol 120(1):75–82

    Article  CAS  PubMed  Google Scholar 

  11. Gensure RC, Ponugoti B, Gunes Y, Papasani MR, Lanske B, Bastepe M, Rubin DA, Jüppner H (2004) Identification and characterization of two parathyroid hormone-like molecules in zebrafish. Endocrinology 145(4):1634–1639. doi:10.1210/en.2003-0964

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez-Mariscal L, Contreras RG, Bolivar JJ, Ponce A, Chavez De Ramirez B, Cereijido M (1990) Role of calcium in tight junction formation between epithelial cells. Amer J Physiol - Cell Physiol 259(6 28-6):C978–C986

    CAS  Google Scholar 

  13. Gunther T, Chen Z-F, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406(6792):199–203, http://www.nature.com/nature/journal/v406/n6792/suppinfo/406199a0_S1.html

    Article  CAS  PubMed  Google Scholar 

  14. Hanaoka R, Ohmori Y, Uyemura K, Hosoya T, Hotta Y, Shirao T, Okamoto H (2004) Zebrafish gcmb is required for pharyngeal cartilage formation. Mech Dev 121(10):1235–1247. doi:10.1016/j.mod.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  15. Herberger AL, Loretz CA (2013) Morpholino oligonucleotide knockdown of the extracellular calcium-sensing receptor impairs early skeletal development in zebrafish. Comp Biochem Physiol Part A 166(3):470–481. doi:10.1016/j.cbpa.2013.07.027

    Article  CAS  Google Scholar 

  16. Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85(1):373–422. doi:10.1152/physrev.00003.2004

    Article  CAS  PubMed  Google Scholar 

  17. Hogan BM, Hunter MP, Oates AC, Crowhurst MO, Hall NE, Heath JK, Prince VE, Lieschke GJ (2004) Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Dev Biol 276(2):508–522. doi:10.1016/j.ydbio.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  18. Horng J-L, Lin L-Y, Hwang P-P (2009) Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Amer J Physiol - Cell Physiol 296(4):C682–C692. doi:10.1152/ajpcell.00576.2008

    Article  CAS  Google Scholar 

  19. Hsiao C-D, You M-S, Guh Y-J, Ma M, Jiang Y-J, Hwang P-P (2007) A positive regulatory loop between foxi3a and foxi3b Is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS ONE 2(3):e302

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hwang P-P, Chou M-Y (2013) Zebrafish as an animal model to study ion homeostasis. Pflugers Arch - Eur J Physiol:1-15. doi: 10.1007/s00424-013-1269-1

  21. Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Amer J Physiol - Regul, Integr Comp Physiol 301(1):R28–R47

    Article  CAS  Google Scholar 

  22. Jänicke M, Carney TJ, Hammerschmidt M (2007) Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev Biol 307(2):258–271

    Article  PubMed  Google Scholar 

  23. Kumai Y, Bahubeshi A, Steele S, Perry SF (2011) Strategies for maintaining Na+ balance in zebrafish (Danio rerio) during prolonged exposure to acidic water. Comp Biochem Physiol: Part A 160(1):52–62

    Article  CAS  Google Scholar 

  24. Kumai Y, Nesan D, Vijayan MM, Perry SF (2012) Cortisol regulates Na+ uptake in zebrafish, Danio rerio, larvae via the glucocorticoid receptor. Mol Cell Endocrinol 364(1–2):113–125

    Article  CAS  PubMed  Google Scholar 

  25. Kwong RWM, Auprix D, Perry SF (2014) Involvement of the calcium-sensing receptor in calcium homeostasis in larval zebrafish exposed to low environmental calcium. Amer J Physiol - Regul, Integr Comp Physiol 306:211–221. doi:10.1152/ajpregu.00350.2013

    Article  Google Scholar 

  26. Kwong RWM, Kumai Y, Perry SF (2014) The physiology of fish at low pH: the zebrafish as a model system. J Exp Biol 217(5):651–662. doi:10.1242/jeb.091603

    Article  CAS  PubMed  Google Scholar 

  27. Kwong RWM, Perry SF (2013) Cortisol regulates epithelial permeability and sodium losses in zebrafish exposed to acidic water. J Endocrinol 217(3):253–264. doi:10.1530/joe-12-0574

    Article  CAS  PubMed  Google Scholar 

  28. Lafont A-G, Wang Y-F, Chen G-D, Liao B-K, Tseng Y-C, Huang C-J, Hwang P-P (2011) Involvement of calcitonin and its receptor in the control of calcium-regulating genes and calcium homeostasis in zebrafish (Danio rerio). J Bone Miner Res 26(5):1072–1083. doi:10.1002/jbmr.301

    Article  CAS  PubMed  Google Scholar 

  29. Laurent P, Perry SF (1990) Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tiss Res 259(3):429–442. doi:10.1007/bf01740769

    Article  CAS  Google Scholar 

  30. Lin CH, Su CH, Hwang PP (2014) Calcium-sensing receptor mediates Ca2+ homeostasis by modulating expression of PTH and stanniocalcin. Endocrinology 155(1):56–67. doi:10.1210/en.2013-1608

    Article  PubMed  Google Scholar 

  31. Lin C-H, Su C-H, Tseng D-Y, Ding F-C, Hwang P-P (2012) Action of vitamin D and the receptor, VDRa, in calcium handling in zebrafish (Danio rerio). PLoS ONE 7(9):e45650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lin C-H, Tsai IL, Su C-H, Tseng D-Y, Hwang P-P (2011) Reverse effect of mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via glucocorticoid receptor-mediated vitamin D3 metabolism. PLoS ONE 6(8):e23689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Loretz CA, Pollina C, Herberger AL, Hyodo S, Takei Y (2012) Skeletal tissues in Mozambique tilapia (Oreochromis mossambicus) express the extracellular calcium-sensing receptor. Comp Biochem Physiol Part A 163(3-4):311–318

    Article  CAS  Google Scholar 

  34. Loretz CA, Pollina C, Hyodo S, Takei Y (2009) Extracellular calcium-sensing receptor distribution in osmoregulatory and endocrine tissues of the tilapia. Gen Comp Endocrinol 161(2):216–228. doi:10.1016/j.ygcen.2008.12.020

    Article  CAS  PubMed  Google Scholar 

  35. Mizobuchi M, Ritter CS, Krits I, Slatopolsky E, Sicard G, Brown AJ (2009) Calcium-sensing receptor expression is regulated by glial cells missing-2 in human parathyroid cells. J Bone Miner Res 24(7):1173–1179. doi:10.1359/jbmr.090211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Motulsky H (1998) Comparing dose-response or kinetic curves with GraphPad Prism. HMS Beagle: (34)

  37. Okabe M, Graham A (2004) The origin of the parathyroid gland. Proc Natl Acad Sci U S A 101(51):17716–17719. doi:10.1073/pnas.0406116101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pan T-C, Liao B-K, Huang C-J, Lin L-Y, Hwang P-P (2005) Epithelial Ca2+ channel expression and Ca2+ uptake in developing zebrafish. Am J Physiol Regul Integr Comp Physiol 289(4):R1202–R1211. doi:10.1152/ajpregu.00816.2004

    Article  CAS  PubMed  Google Scholar 

  39. Perry SF, Flik G (1988) Characterization of branchial transepithelial calcium fluxes in freshwater trout, Salmo gairdneri. Amer J Physiol - Regul, Integr Comp Physiol 254(3):R491–R498

    CAS  Google Scholar 

  40. Perry SF, Vulesevic B, Grosell M, Bayaa M (2009) Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio). Amer J Physiol - Regul, Integr Comp Physiol 297(4):R988–R997. doi:10.1152/ajpregu.00327.2009

    Article  CAS  Google Scholar 

  41. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):2002–2007

    Article  Google Scholar 

  42. Shahsavarani A, Perry SF (2006) Hormonal and environmental regulation of epithelial calcium channel in gill of rainbow trout (Oncorhynchus mykiss). Amer J Physiol - Regul, Integr Comp Physiol 291(5):R1490–R1498. doi:10.1152/ajpregu.00026.2006

    Article  CAS  Google Scholar 

  43. Shono T, Kurokawa D, Miyake T, Okabe M (2011) Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish. PLoS ONE 6(8):e23746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Stuart RO, Sun A, Panichas M, Hebert SC, Brenner BM, Nigam SK (1994) Critical role for intracellular calcium in tight junction biogenesis. J Cell Physiol 159(3):423–433

    Article  CAS  PubMed  Google Scholar 

  45. Tseng D-Y, Chou M-Y, Tseng Y-C, Hsiao C-D, Huang C-J, Kaneko T, Hwang P-P (2009) Effects of stanniocalcin 1 on calcium uptake in zebrafish (Danio rerio) embryo. Amer J Physiol - Regul, Integr Comp Physiol 296(3):R549–R557. doi:10.1152/ajpregu.90742.2008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Vishal Saxena and Bill Fletcher at the University of Ottawa for their excellent animal care. We also thank Alison Castle for her assistance with cortisol assay. This study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery and Research Tools and Innovation grants to SFP. YK was supported by an Ontario Graduate Scholarship during the tenure of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve F. Perry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumai, Y., Kwong, R.W.M. & Perry, S.F. A role for transcription factor glial cell missing 2 in Ca2+ homeostasis in zebrafish, Danio rerio . Pflugers Arch - Eur J Physiol 467, 753–765 (2015). https://doi.org/10.1007/s00424-014-1544-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1544-9

Keywords

Navigation