Skip to main content
Log in

New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca2+ permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad I, Leinders-Zufall T, Kocsis JD, Shepherd GM, Zufall F, Barnstable CJ (1994) Retinal ganglion cells express a cGMP-gated cation conductance activatable by nitric oxide donors. Neuron 12:155–165

    CAS  PubMed  Google Scholar 

  2. Allaman I, Bélanger M, Magistretti PJ (2011) Astrocyte–neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87

    CAS  PubMed  Google Scholar 

  3. Arancio O, Kandel ER, Hawkins RD (1995) Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,6′-cyclic GMP in cultured hippocampal neurons. Nature 376:74–80

    CAS  PubMed  Google Scholar 

  4. Arancio O, Kiebler M, Lee CJ, Lev-Ram V, Tsien RY, Kandel ER, Hawkins RD (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87:1025–1035

    CAS  PubMed  Google Scholar 

  5. Arora K, Sinha C, Zhang W, Ren A, Moon CS, Yarlagadda S, Naren AP (2013) Compartmentalization of cyclic nucleotide signaling: a question of when, where, and why? Pflügers Arch 465:1397–1407. doi:10.1007/s00424-013-1280-6

    CAS  PubMed  Google Scholar 

  6. Baker H, Cummings DM, Munger SD, Margolis JW, Franzen L, Reed RR, Margolis FL (1999) Targeted deletion of a cyclic nucleotide-gated channel subunit (OCNC1): biochemical and morphological consequences in adult mice. J Neurosci 19:9313–9321

    CAS  PubMed  Google Scholar 

  7. Baltrons MA, Boran MS, Pifarre P, Garcıa A (2008) Regulation and function of cyclic GMP-mediated pathways in glial cells. Neurochem Res 33:2427–2435

    CAS  PubMed  Google Scholar 

  8. Baltrons MA, Garcıa A (2001) The nitric oxide/cyclic GMP system in astroglial cells. Prog Brain Res 132:325–337

    CAS  PubMed  Google Scholar 

  9. Barnstable CJ, Wei JY, Han MH (2004) Modulation of synaptic function by cGMP and cGMP-gated cation channels. Neurochem Int 45:875–884

    CAS  PubMed  Google Scholar 

  10. Bernabeu R, Schmitz P, Faillace MP, Izquierdo I, Medina JH (1996) Hippocampal cGMP and cAMP are differentially involved in memory processing of inhibitory avoidance learning. Neuroreport 7:585–588

    CAS  PubMed  Google Scholar 

  11. Biel M, Michalakis S (2007) Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol Neurobiol 35:266–277

    CAS  PubMed  Google Scholar 

  12. Biel M, Michalakis S (2009) Cyclic nucleotide-gated channels. Handb Exp Pharmacol 191:111–136

    CAS  PubMed  Google Scholar 

  13. Biel M, Seeliger M, Pfeifer A, Kohler K, Gerstner A, Ludwig A, Jaissle G, Fauser S, Zrenner E, Hofmann F (1999) Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci U S A 96:7553–7557

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bliss TVB, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    CAS  PubMed  Google Scholar 

  15. Boccaccio A, Menini A (2007) Temporal development of cyclic nucleotide-gated and Ca2+-activated Cl currents in isolated mouse olfactory sensory neurons. J Neurophysiol 98:153–160

    CAS  PubMed  Google Scholar 

  16. Bohme GA, Bon C, Lemaire M, Reibaud M, Piot O, Stutzmann JM, Doble A, Blanchard JC (1993) Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc Natl Acad Sci U S A 90:9191–9194

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bollen E, Prickaerts J (2012) Phosphodiesterases in neurodegenerative disorders. IUBMB Life 64:965–70

    CAS  PubMed  Google Scholar 

  18. Bönigk W, Loogen A, Seifert R, Kashikar N, Klemm C, Krause E, Hagen V, Kremmer E, Strünker T, Kaupp UB (2009) An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis. Sci Signal 2:ra68

    PubMed  Google Scholar 

  19. Boran MS, Garcia A (2007) The cyclic GMP-protein kinase G pathway regulates cytoskeleton dynamics and motility in astrocytes. J Neurochem 102:216–230

    CAS  PubMed  Google Scholar 

  20. Borland G, Smith BO, Yarwood SJ (2009) EPAC proteins transduce diverse cellular actions of cAMP. Br J Pharmacol 158:70–86

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733–738

    CAS  PubMed  Google Scholar 

  22. Bradley J, Frings S, Yau KW, Reed R (2001) Nomenclature for ion channel subunits. Science 294:2095–2096

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Bradley J, Zhang Y, Bakin R, Lester HA, Ronnett GV, Zinn K (1997) Functional expression of the heteromeric “olfactory” cyclic nucleotidegated channel in the hippocampus: a potential effector of synaptic plasticity in brain neurons. J Neurosci 17:1993–2005

    CAS  PubMed  Google Scholar 

  24. Broillet MC, Firestein S (1999) Cyclic nucleotide-gated channels. Molecular mechanisms of activation. Ann N Y Acad Sci 868:730–740

    CAS  PubMed  Google Scholar 

  25. Brown RL, Haley TL, West KA, Crabb JW (1999) Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels. Proc Natl Acad Sci U S A 96:754–759

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693

    CAS  PubMed  Google Scholar 

  27. Burns ME, Baylor DA (2001) Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci 24:779–805

    CAS  PubMed  Google Scholar 

  28. Butt E, Geiger J, Jarchau T, Lohmann SM, Walter U (1993) The cGMP-dependent protein kinase-gene, protein, and function. Neurochem Res 18:27–42

    CAS  PubMed  Google Scholar 

  29. Chapman PF, Atkins CM, Allen MT, Haley JE, Steinmetz JE (1992) Inhibition of nitric oxide synthesis impairs two different forms of learning. Neuroreport 3:567–570

    CAS  PubMed  Google Scholar 

  30. Charbonneau H, Prusti RK, Letrong H, Sonnenburg WK, Mullaney PJ, Walsh KA, Beavo JA (1990) Cyclic nucleotide binding-PDE. Proc Natl Acad Sci U S A 87:288–292

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Charles A, Weiner R, Costantin J (2001) cAMP modulates the excitability of immortalized hypothalamic (GT1) neurons via a cyclic nucleotide gated channel. Mol Endocrinol 15:997–1009

    CAS  PubMed  Google Scholar 

  32. Cobbs WH, Barkdoll AE III, Pugh EN Jr (1985) Cyclic GMP increase photocurrent and light sensitivity of retinal cone. Nature 317:64–66

    CAS  PubMed  Google Scholar 

  33. Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17:695–706

    CAS  PubMed  Google Scholar 

  34. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    CAS  PubMed  Google Scholar 

  35. Corbin JD, Krebs EG (1969) A cyclic AMP-stimulated protein kinase in adipose tissue. Biochem Biophys Res Commun 36:328–336

    CAS  PubMed  Google Scholar 

  36. Craven KB, Olivier NB, Zagotta WN (2008) C-terminal movement during gating in cyclic nucleotide-modulated channels. J Biol Chem 283:14728–14738

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401

    CAS  PubMed  Google Scholar 

  38. Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, Ripoli C, Azzena GB, Grassi C (2010) Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol 226:173–182

    PubMed  Google Scholar 

  39. D’Ascenzo M, Piacentini R, Casalbore P, Budoni M, Pallini R, Azzena GB, Grassi C (2006) Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation. Eur J Neurosci 23:935–944

    PubMed  Google Scholar 

  40. Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721

    CAS  PubMed  Google Scholar 

  41. De Crombrugghe B, Busby S, Buc H (1984) Cyclic AMP receptor protein: role in transcription activation. Science 224:831–838

    PubMed  Google Scholar 

  42. De Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    PubMed  Google Scholar 

  43. Degerman E, Belfrage P, Manganiello VC (1997) Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J Biol Chem 272:6823–6826

    CAS  PubMed  Google Scholar 

  44. Ding C, Potter ED, Qiu W, Coon SL, Levine MA, Guggino SE (1997) Cloning and widespread distribution of the rat rod-type cyclic nucleotide-gated cation channel. Am J Physiol 272:C1335–C1344

    CAS  PubMed  Google Scholar 

  45. Dryer SE, Henderson D (1991) Cyclic GMP-activated channels of the chick pineal gland: effects of divalent cations, pH, and cyclic AMP. J Comp Physiol A 172:271–279

    Google Scholar 

  46. Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Eismann E, Müller F, Heinemann SH, Kaupp UB (1994) A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. Proc Natl Acad Sci U S A 91:1109–1113

    CAS  PubMed Central  PubMed  Google Scholar 

  48. El Husseini AE, Bladen C, Vincent SR (1995) Expression of the olfactory cyclic nucleotide gated channel (CNG1) in the rat brain. Neuroreport 6:1459–1463

    Google Scholar 

  49. El-Majdoubi M, Weiner RI (2002) Localization of olfactory cyclic nucleotide-gated channels in rat gonadotropin-releasing hormone neurons. Endocrinology 143:2441–2444

    CAS  PubMed  Google Scholar 

  50. Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985) Induction by cGMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310–313

    CAS  PubMed  Google Scholar 

  51. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    CAS  PubMed  Google Scholar 

  52. Flynn GE, Black KD, Islas LD, Sankaran B, Zagotta WN (2007) Structure and rearrangements in the carboxy-terminal region of SpIH channels. Structure 15:671–682

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Flynn GE, Johnson JP Jr, Zagotta WN (2001) Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nat Rev Neurosci 2:643–651

    CAS  PubMed  Google Scholar 

  54. Frings S, Lynch JW, Lindemann B (1992) Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol 100:45–67

    CAS  PubMed  Google Scholar 

  55. Frings S, Seifert R, Godde M, Kaupp UB (1995) Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15:169–179

    CAS  PubMed  Google Scholar 

  56. Gomez-Pinedo U, Rodrigo R, Cauli O, Herraiz S, Garcia-Verdugo JM, Pellicer B, Pellicer A, Felipo V (2010) cGMP modulates stem cells differentiation to neurons in brain in vivo. Neuroscience 165:1275–1283

    CAS  PubMed  Google Scholar 

  57. Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221

    PubMed  Google Scholar 

  58. Gundersen RW, Barrett JN (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol 87:546–554

    CAS  PubMed  Google Scholar 

  59. Gupta VK, Rajala A, Rajala RV (2012) Insulin receptor regulates photoreceptor CNG channel activity. Am J Physiol Endocrinol Metab 303:E1363–1372

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Gutièrrez-Mecinas J, Blasco-Ibáñez NJ, Varea E, Martinez-Guijarro FJ, Crespo C (2008) Distribution of the A3 subunit of the cyclic nucleotide-gated ion channels in the main olfactory bulb of the rat. Neuroscience 153:1164–1176

    PubMed  Google Scholar 

  61. Hagen V, Dzeja C, Frings S, Bendig J, Krause E, Kaupp UB (1996) Caged compounds of hydrolysis-resistant analogues of cAMP and cGMP: synthesis and application to cyclic nucleotide-gated channels. Biochemistry 35:7762–7771

    CAS  PubMed  Google Scholar 

  62. Haynes LW (1992) Block of the cyclic GMP-gated channel of vertebrate rod and cone photoreceptors by 1-cis-diltiazem. J Gen Physiol 100:783–801

    CAS  PubMed  Google Scholar 

  63. Haynes LW, Yau KW (1985) Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature 317:61–64

    CAS  PubMed  Google Scholar 

  64. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  65. Heine S, Michalakis S, Kallenborn-Gerhardt W, Lu R, Lim HY, Weiland J, Del Turco D, Deller T, Henley JR, Huang KH, Wang D, Poo MM (2004) Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron 44:909–916

    Google Scholar 

  66. Heine S, Michalakis S, Kallenborn-Gerhardt W, Lu R, Lim HY, Weiland J, Del Turco D, Deller T, Tegeder I, Biel M, Geisslinger G, Schmidtko A (2011) CNGA3: a target of spinal nitric oxide/cGMP signaling and modulator of inflammatory pain hypersensitivity. J Neurosci 31:11184–11192

    CAS  PubMed  Google Scholar 

  67. Henley J, Poo MM (2004) Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14:320–330

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland

    Google Scholar 

  69. Ho VM, Lee JA, Martin KC (2011) The cell biology of synaptic plasticity. Science 334:623–628

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Hofmann F, Biel M, Kaupp UB (2005) International Union of Pharmacology. LI. Nomenclature and structure–function relationships of cyclic nucleotide-regulated channels. Pharmacol Rev 57:455–462

    CAS  PubMed  Google Scholar 

  71. Hofmann F, Dostmann W, Keilbach A, Landgraf W, Ruth P (1992) Structure and physiological role of cGMP-dependent protein kinase. Biochim Biophys Acta 1135:51–60

    CAS  PubMed  Google Scholar 

  72. Hong K, Nishiyama M, Henley J, Tessier-Lavigne M, Poo MM (2000) Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403:93–98

    CAS  PubMed  Google Scholar 

  73. Hüttl S, Michalakis S, Seeliger M, Luo D-G, Acar N, Geiger H, Hudl K, Mader R, Haverkamp S, Moser M, Pfeifer A, Gerstner A, Yau K-W, Biel M (2005) Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J Neurosci 25:130–138

    PubMed Central  PubMed  Google Scholar 

  74. Ito H, Tsuchimochi H, Tada Y, Kurachi Y (1997) Phosphorylation-independent inhibition by intracellular cyclic nucleotides of brain inwardly rectifying K+ current expressed in Xenopus oocytes. FEBS Lett 402:12–16

    CAS  PubMed  Google Scholar 

  75. Jan LY, Jan YN (1990) A superfamily of ion channels. Nature 345:672

    CAS  PubMed  Google Scholar 

  76. Jimenez-Gonzalez C, McLaren GJ, Dale N (2003) Development of Ca2+-channel and BK-channel expression in embryos and larvae of Xenopus laevis. Eur J Neurosci 18:2175–2187

    PubMed  Google Scholar 

  77. Kafitz KW, Leinders-Zufall T, Zufall F, Greer CA (2000) Cyclic GMP evoked calcium transients in olfactory receptor cell growth cones. Neuroreport 11:677–681

    CAS  PubMed  Google Scholar 

  78. Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Karpen JW, Brown RL, Stryer L, Baylor DA (1993) Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods. J Gen Physiol 101:1–25

    CAS  PubMed  Google Scholar 

  80. Kaupp UB, Dzeja C, Frings S, Bendig J, Hagen V (1998) Applications of caged compounds of hydrolysis-resistant analogs of cAMP and cGMP. Methods Enzymol 291:415–430

    CAS  PubMed  Google Scholar 

  81. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    CAS  PubMed  Google Scholar 

  82. Kelliher KR, Ziesmann J, Munger SD, Reed RR, Zufall F (2003) Importance of the CNGA4 channel gene for odor discrimination and adaptation in behaving mice. Proc Natl Acad Sci U S A 100:4299–4304

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Kingston PA, Zufall F, Barnstable CJ (1996) Rat hippocampal neurons express genes for both rod retinal and olfactory cyclic nucleotide gated channels: novel targets for cAMP/cGMP function. Proc Natl Acad Sci U S A 93:10440–10445

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kingston PA, Zufall F, Barnstable CJ (1999) Widespread expression of olfactory cyclic nucleotide-gated channel genes in rat brain: implications for neuronal signalling. Synapse 32:1–12

    CAS  PubMed  Google Scholar 

  85. Kirchner L, Weitzdoerfer R, Hoeger H, Url A, Schmidt P, Engelmann M, Villar SR, Fountoulakis M, Lubec G, Lubec B (2004) Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements. Nitric Oxide 11:316–330

    CAS  PubMed  Google Scholar 

  86. Klein PJ, Sun TJ, Saxe CL, Kimmel AR, Johnson RL, Devreotes PN (1988) A chemoattractant receptor controls development in Dictyostelium discoideum. Science 241:1467–1472

    CAS  PubMed  Google Scholar 

  87. Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17:707–718

    CAS  PubMed  Google Scholar 

  88. Koylu EO, Kanit L, Taskiran D, Dagci T, Balkan B, Pogun S (2005) Effects of nitric oxide synthase inhibition on spatial discrimination learning and central DA2 and mACh receptors. Pharmacol Biochem Behav 81:32–340

    CAS  PubMed  Google Scholar 

  89. Kramer RH, Molokanova E (2001) Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction. J Exp Biol 204:2921–2931

    CAS  PubMed  Google Scholar 

  90. Kramer RH, Tibbs GR (1996) Antagonists of cyclic nucleotide-gated channels and molecular mapping of their site of action. J Neurosci 16:1285–1293

    CAS  PubMed  Google Scholar 

  91. Krebs EG, Beavo JA (1979) Phosphorylation–dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    CAS  PubMed  Google Scholar 

  92. Kuo JF, Greengard P (1969) Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3′,5′-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A 64:1349–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Kuo JF, Greengard P (1970) Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3′,5′-monophosphate. J Biol Chem 245:2493–2498

    CAS  PubMed  Google Scholar 

  94. Kusaka S, Dabin I, Barnstable CJ, Puro DG (1996) cGMP-mediated effects on the physiology of bovine and human retinal Müller (glial) cells. J Physiol 497:813–824

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Kuzmiski JB, MacVicar BA (2001) Cyclic nucleotide-gated channels contribute to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 21:8707–8714

    CAS  PubMed  Google Scholar 

  96. Leconte L, Barnstable CJ (2000) Impairment of rod cGMP-gated channel alpha-subunit expression leads to photoreceptor and bipolar cell degeneration. Invest Ophthalmol Vis Sci 41:917–926

    CAS  PubMed  Google Scholar 

  97. Leinders-Zufall T, Rand MN, Shepherd GM, Greer CA, Zufall F (1997) Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 17:4136–4148

    CAS  PubMed  Google Scholar 

  98. Leinders-Zufall T, Rosenboom H, Barnstable CJ, Shepherd GM, Zufall F (1995) A calcium-permeable cGMP-activated cation conductance in hippocampal neurons. Neuroreport 6:1761–1765

    CAS  PubMed  Google Scholar 

  99. Li J, Zagotta WN, Lester HA (1997) Cyclic nucleotide-gated channels: structural basis of ligand efficacy and allosteric modulation. Q Rev Biophys 30:177–193

    CAS  PubMed  Google Scholar 

  100. Lohof AM, Quillan M, Dan Y, Poo MM (1992) Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J Neurosci 12:1253–1261

    CAS  PubMed  Google Scholar 

  101. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    CAS  PubMed  Google Scholar 

  102. Lopez-Jimenez ME, González JC, Lizasoain I, Sánchez-Prieto J, Hernádez-Guijo JM, Torres M (2012) Functional cGMP-gated channels in cerebellar granule cells. J Cell Physiol 227:2252–2263

    CAS  PubMed  Google Scholar 

  103. Lu R, Schmidtko A (2013) Direct intrathecal drug delivery in mice for detecting in vivo effects of cGMP on pain processing. Methods Mol Biol 1020:215–221

    CAS  PubMed  Google Scholar 

  104. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    CAS  PubMed  Google Scholar 

  105. Matulef K, Zagotta WN (2003) Cyclic nucleotide-gated ion channels. Annu Rev Cell Dev Biol 19:23–44

    CAS  PubMed  Google Scholar 

  106. McLatchie LM, Matthews HR (1994) The effect of pH on the block by l-cis-diltiazem and amiloride of the cyclic GMP-activated conductance of salamander rods. Proc Biol Sci 255:231–236

    CAS  PubMed  Google Scholar 

  107. Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670

    CAS  PubMed  Google Scholar 

  108. Michalakis S, Kleppisch T, Polta SA, Wotjak CT, Koch S, Rammes G, Matt L, Becirovic E, Biel M (2011) Altered synaptic plasticity and behavioral abnormalities in CNGA3-deficient mice. Genes Brain Behav 10:137–148

    CAS  PubMed  Google Scholar 

  109. Michalakis S, Reisert J, Geiger H, Wetzel C, Zong X, Bradley J, Spehr M, Hüttl S, Gerstner A, Pfeifer A, Hatt H, Yau KW, Biel M (2006) Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping. J Biol Chem 281:35156–35166

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Miller WH (1990) Dark mimic. Invest Ophthalmol Visual Sci 31:1664–1673

    Google Scholar 

  111. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ming GL, Song HJ, Berninger B, Holt CE, Tessier-Lavigne M, Poo MM (1997) cAMP-dependent growth cone guidance by netrin-1. Neuron 19:1225–1235

    CAS  PubMed  Google Scholar 

  113. Molday RS (1995) Calmodulin regulation of cyclic-nucleotide-gated channels. Curr Opin Neurobiol 6:445–452

    Google Scholar 

  114. Munger SD, Lane AP, Zhong H, Leinders-Zufall T, Yau KW, Zufall F, Reed RR (2001) Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 294:2172–2175

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Murphy GJ, Isaacson JS (2003) Presynaptic cyclic nucleotide-gated ion channels modulate neurotransmission in the mammalian olfactory bulb. Neuron 37:639–647

    CAS  PubMed  Google Scholar 

  116. Nache V, Schulz E, Zimmer T, Kusch J, Biskup C, Koopmann R, Hagen V, Benndorf K (2005) Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative. J Physiol 569:91–102

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444

    CAS  PubMed  Google Scholar 

  118. Nawy S, Jahr CE (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346:269–271

    CAS  PubMed  Google Scholar 

  119. Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, Tessier-Lavigne M, Poo MM, Hong K (2003) Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth cone turning. Nature 423:990–995

    CAS  PubMed  Google Scholar 

  120. O’Dell TJ, Hawkins RD, Kandel E, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide a possible early retrograde messenger. Proc Natl Acad Sci U S A 88:11285–11289

    PubMed Central  PubMed  Google Scholar 

  121. Palmeri A, Privitera L, Giunta S, Loreto C, Puzzo D (2013) Inhibition of phosphodiesterase-5 rescues age-related impairment of synaptic plasticity and memory. Behav Brain Res 240:11–20

    CAS  PubMed  Google Scholar 

  122. Parent A, Schrader K, Munger SD, Reed RR, Linden DJ, Ronnett GV (1998) Synaptic transmission and hippocampal long-term potentiation in olfactory cyclic nucleotide-gated channel type 1 null mouse. J Neurophysiol 79:3295–3301

    CAS  PubMed  Google Scholar 

  123. Peace AG, Shewan DA (2011) New perspectives in cyclic AMP-mediated axon growth and guidance: the emerging epoch of Epac. Brain Res Bull 84:280–288

    CAS  PubMed  Google Scholar 

  124. Peng C, Rich ED, Varnum MD (2004) Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron 42:401–410

    CAS  PubMed  Google Scholar 

  125. Perea G, Araque A (2010) GLIA modulates synaptic transmission. Brain Res Rev 63:93–102

    CAS  PubMed  Google Scholar 

  126. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    CAS  PubMed  Google Scholar 

  127. Perry RJ, McNaughton PA (1991) Response properties of cones from the retina of the tiger salamander. J Physiol (Lond) 433:561–587

    CAS  Google Scholar 

  128. Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C (2008) Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol 215:129–139

    CAS  PubMed  Google Scholar 

  129. Picones A, Korenbrot JI (1995) Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors. Biophys J 69:120–127

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Podda MV, D’Ascenzo M, Leone L, Piacentini R, Azzena GB, Grassi C (2008) Functional role of cyclic nucleotide-gated channels in rat medial vestibular nucleus neurons. J Physiol (Lond) 586:803–815

    CAS  Google Scholar 

  131. Podda MV, Leone L, Piacentini R, Cocco S, Mezzogori D, D’Ascenzo M, Grassi C (2012) Expression of olfactory-type cyclic nucleotide-gated channels in rat cortical astrocytes. Glia 60:1391–1405

    PubMed  Google Scholar 

  132. Podda MV, Marcocci ME, Del Carlo B, Palamara AT, Azzena GB, Grassi C (2005) Expression of cyclic nucleotide-gated channels in the rat medial vestibular nucleus. Neuroreport 16:1939–1943

    CAS  PubMed  Google Scholar 

  133. Podda MV, Marcocci ME, Oggiano L, D’Ascenzo M, Tolu E, Palamara AT, Azzena GB, Grassi C (2004) Nitric oxide increases the spontaneous firing rate of rat medial vestibular nucleus neurons in vitro via a cyclic GMP-mediated PKG-independent mechanism. Eur J Neurosci 20:2124–2132

    PubMed  Google Scholar 

  134. Podda MV, Piacentini R, Barbati SA, Mastrodonato A, Puzzo D, D’Ascenzo M, Leone L, Grassi C (2013) Role of cyclic nucleotide-gated channels in the modulation of mouse hippocampal neurogenesis. PLoS ONE 8(8):e73246. doi:10.1371/journal.pone.0073246

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Podda MV, Riccardi E, D’Ascenzo M, Azzena GB, Grassi C (2010) Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K+ currents through a cAMP-dependent PKA-independent mechanism. Neuroscience 167:678–690

    CAS  PubMed  Google Scholar 

  136. Pollenz RS, McCarthy KD (1986) Analysis of cyclic AMP-dependent changes in intermediate filament protein phosphorylation and cell morphology in cultured astroglia. J Neurochem 47:9–17

    CAS  PubMed  Google Scholar 

  137. Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang XB, Christensen AE, Schwede F, Genieser HG, Bos JL, Doskeland SO, Beavo JA, Butt E (2008) Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods 5:277–278

    CAS  PubMed  Google Scholar 

  138. Prickaerts J, Steinbusch HW, Smits JF, Vente D (1997) Possible role of nitric oxide-cyclic GMP pathway in object recognition memory: effects of 7-nitroindazole and zaprinast. Eur J Pharmacol 33:125–136

    Google Scholar 

  139. Puzzo D, Sapienza S, Arancio O, Palmeri A (2008) Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 4:371–387

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Puzzo D, Staniszewski A, Deng SX, Privitera L, Leznik E, Liu S, Zhang H, Feng Y, Palmeri A, Landry DW, Arancio O (2009) Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model. J Neurosci 29:8075–8086

    CAS  PubMed  Google Scholar 

  141. Quandt FN, Nicol GD, Schnetkamp PPM (1991) Voltage-dependent gating and block of the cyclic-GMP-dependent current in bovine rod outer segments. Neuroscience 42:629–638

    CAS  PubMed  Google Scholar 

  142. Rehmann H, Wittinghofer A, Bos JL (2007) Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat Rev Mol Cell Biol 8:63–73

    CAS  PubMed  Google Scholar 

  143. Reierson GW, Guo S, Mastronardi C, Licinio J, Wong ML (2011) cGMP signaling, phosphodiesterases and major depressive disorder. Curr Neuropharmacol 9:715–727

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609

    CAS  PubMed  Google Scholar 

  145. Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116:147–161

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Richter W, Menniti FS, Zhang HT, Conti M (2013) PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 17:1011–1027

    CAS  PubMed  Google Scholar 

  147. Rieke F, Schwartz EA (1994) A cGMP-gated current can control exocytosis at cone synapses. Neuron 13:863–873

    CAS  PubMed  Google Scholar 

  148. Root MJ, Mackinnon R (1993) Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron 11:459–466

    CAS  PubMed  Google Scholar 

  149. Salin PA, Malenka RC, Nicoll RA (1996) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797–803

    CAS  PubMed  Google Scholar 

  150. Samanta Roy DR, Barnstable CJ (1999) Temporal and spatial pattern of expression of cyclic nucleotide-gated channels in developing rat visual cortex. Cereb Cortex 9:340–347

    CAS  PubMed  Google Scholar 

  151. Santoro M, Piacentini R, Masciullo M, Bianchi ML, Modoni A, Podda MV, Ricci E, Silvestri G, Grassi C (2013) Alternative splicing alterations of Ca2+ handling genes are associated with Ca2+ signal dysregulation in DM1 and DM2 myotubes. Neuropathol Appl Neurobiol. doi:10.1111/nan.12076

    Google Scholar 

  152. Sautter A, Biel M, Hofmann F (1997) Molecular cloning of cyclic nucleotide-gated cation channel subunits from rat pineal gland. Brain Res Mol Brain Res 48:171–175

    CAS  PubMed  Google Scholar 

  153. Savchenko A, Barnes S, Kramer RH (1997) Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature 390:694–698

    CAS  PubMed  Google Scholar 

  154. Saxe CL, Johnson R, Devreotes PN, Kimmel AR (1991) Expression of a cAMP receptor gene of Dictyostelium and evidence for a multigene family. Dev Genet 12:6–13

    CAS  PubMed  Google Scholar 

  155. Schmidtko A, Gao W, Sausbier M, Rauhmeier I, Sausbier U, Niederberger E, Scholich K, Huber A, Neuhuber W, Allescher HD, Hofmann F, Tegeder I, Ruth P, Geisslinger G (2008) Cysteine-rich protein 2, a novel downstream effector of cGMP/cGMP-dependent protein kinase I-mediated persistent inflammatory pain. J Neurosci 28:1320–1330

    CAS  PubMed  Google Scholar 

  156. Schmidtko A, Tegeder I, Geisslinger G (2009) No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci 32:339–346

    CAS  PubMed  Google Scholar 

  157. Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–1506

    CAS  PubMed  Google Scholar 

  158. Schwede F, Maronde E, Genieser H, Jastorff B (2000) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87:199–226

    CAS  PubMed  Google Scholar 

  159. Scott JD (1991) Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 50:123–145

    CAS  PubMed  Google Scholar 

  160. Shabb JB, Corbin JD (1992) Cyclic nucleotide-binding domains in protein having diverse functions. J Biol Chem 267:5723–5726

    CAS  PubMed  Google Scholar 

  161. Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Ca2+-regulated transcription factor phosphorylation by calmodulin-dependent kinase. Science 252:1427–1430

    CAS  PubMed  Google Scholar 

  162. Shiells RA, Falk G (1990) Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc Biol Sci 242:91–94

    CAS  PubMed  Google Scholar 

  163. Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song HJ, Ming GL (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8:730–735

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Skalhegg BS, Tasken K (2000) Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci 5:D678–D693

    CAS  PubMed  Google Scholar 

  165. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    PubMed Central  PubMed  Google Scholar 

  166. Song HJ, Ming G, He Z, Lehmann M, McKerracher L, Tessier-Lavigne M, Poo M (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515–1518

    CAS  PubMed  Google Scholar 

  167. Song HJ, Ming GL, Poo MM (1997) cAMP-induced switching in turning direction of nerve growth cones. Nature 388:275–279

    CAS  PubMed  Google Scholar 

  168. Song HJ, Poo MM (1999) Signal transduction underlying growth cone guidance by diffusible factors. Curr Opin Neurobiol 9:355–363

    CAS  PubMed  Google Scholar 

  169. Strijbos PJ, Pratt GD, Khan S, Charles IG, Garthwaite J (1999) Molecular characterization and in situ localization of a full-length cyclic nucleotide-gated channel in rat brain. Eur J Neurosci 11:4463–4467

    CAS  PubMed  Google Scholar 

  170. Sutherland EW (1992) Studies on the mechanism of hormone action. In: Lindsten J (ed) Nobel Lectures in Physiology or Medicine (1971–1980), World Scientific, Singapore, pp 1–22

  171. Tanaka JC, Eccleston JF, Furman RE (1989) Photoreceptor channel activation by nucleotide derivatives. Biochemistry 28:2776–2784

    CAS  PubMed  Google Scholar 

  172. Taraska JW, Zagotta WN (2007) Structural dynamics in the gating ring of cyclic nucleotide-gated ion channels. Nat Struct Mol Biol 14:854–860

    CAS  PubMed  Google Scholar 

  173. Tegeder I, Del Turco D, Schmidtko A, Sausbier M, Feil R, Hofmann F, Deller T, Ruth P, Geisslinger G (2004) Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMPdependent protein kinase I. Proc Natl Acad Sci U S A 101:3253–3257

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Tegeder I, Schmidtko A, Niederberger E, Ruth P, Geisslinger G (2002) Dual effects of spinally delivered 8-bromo-cyclic guanosine mono-phosphate (8-bromo-cGMP) in formalin-induced nociception in rats. Neurosci Lett 332:146–150

    CAS  PubMed  Google Scholar 

  175. Togashi K, von Schimmelmann MJ, Nishiyama M, Lim CS, Yoshida N, Yun B, Molday RS, Goshima Y, Hong K (2008) Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion. Neuron 58:694–707

    CAS  PubMed  Google Scholar 

  176. Tomic M, Koshimizu T, Yuan D, Andric SA, Zivadinovic D, Stojilkovic SS (1999) Characterization of a plasma membrane calcium oscillator in rat pituitary somatotrophs. J Biol Chem 274:35693–35702

    CAS  PubMed  Google Scholar 

  177. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79:1277–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Trudeau MC, Zagotta WN (2003) Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J Biol Chem 278:18705–18708

    CAS  PubMed  Google Scholar 

  179. Vitalis EA, Costantin JL, Tsai PS, Sakakibara H, Paruthiyil S, Iiri T, Martini JF, Taga M, Choi AL, Charles AC, Weiner RI (2000) Role of the cAMP signaling pathway in the regulation of gonadotropin releasing hormone secretion in GT1 cells. Proc Natl Acad Sci U S A 97:1861–1866

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Walter U (1989) Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 113:41–87

    CAS  PubMed  Google Scholar 

  181. Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434:898–904

    CAS  PubMed  Google Scholar 

  182. Wang X, Robinson PJ (1997) Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J Neurochem 68:443–456

    CAS  PubMed  Google Scholar 

  183. Wei JY, Cohen ED, Yan HG, Genieser YY, Barnstable CJ (1996) Identification of competitive antagonists of the rod photoreceptor cGMP-gated cation channel: β-phenyl-1, N2-etheno substituted cGMP analogues as probes of the cGMP-binding site. Biochemistry 35:16815–16823

    CAS  PubMed  Google Scholar 

  184. Wei JY, Samanta Roy D, Leconte L, Barnstable CJ (1998) Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system. Prog Neurobiol 56:37–64

    PubMed  Google Scholar 

  185. Weiskopf MG, Castillo PE, Zalutsky RA, Nicoll RA (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265:1878–l882

    Google Scholar 

  186. Weitz D, Ficek N, Kremmer E, Bauer PJ, Kaupp UB (2002) Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 36:881–889

    CAS  PubMed  Google Scholar 

  187. Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    CAS  PubMed  Google Scholar 

  188. Woolfrey KM, Srivastava DP, Photowala H, Yamashita M, Barbolina MV, Cahill ME, Xie Z, Jones KA, Quilliam LA, Prakriya M, Penzes P (2009) Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat Neurosci 12:1275–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Yamada K, Noda Y, Hasegawa T, Komori Y, Nikai T, Sugihara H, Nabeshima T (1996) The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice. J Pharmacol Exp Ther 276:460–466

    CAS  PubMed  Google Scholar 

  190. Yau KW, Nakatani K (1985) Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature 313:579–582

    CAS  PubMed  Google Scholar 

  191. Zagotta WN, Siegelbaum SA (1996) Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 19:235–263

    CAS  PubMed  Google Scholar 

  192. Zhang FX, Liu XJ, Gong LQ, Yao JR, Li KC, Li ZY, Lin LB, Lu YJ, Xiao HS, Bao L, Zhang XH, Zhang X (2010) Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J Neurosci 30:10927–10938

    CAS  PubMed  Google Scholar 

  193. Zhao H, Reed RR (2001) X inactivation of the OCNC1 channel gene reveals a role for activity dependent competition in the olfactory system. Cell 104:651–660

    CAS  PubMed  Google Scholar 

  194. Zheng C, Feinstein P, Bozza T, Rodriguez I, Mombaerts P (2000) Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 26:81–91

    CAS  PubMed  Google Scholar 

  195. Zheng J, Trudeau MC, Zagotta WN (2002) Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 36:891–896

    CAS  PubMed  Google Scholar 

  196. Zheng J, Zagotta WN (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42:411–421

    CAS  PubMed  Google Scholar 

  197. Zhong H, Molday LL, Molday RS, Yau KW (2002) The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420:193–198

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Zhou L, Siegelbaum SA (2007) Gating of HCN channels by cyclic nucleotides: residue contacts that underlie ligand binding, selectivity, and efficacy. Structure 15:655–670

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD (1994) Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639

    CAS  PubMed  Google Scholar 

  200. Zimmermann AL, Yamanaka G, Eckstein F, Baylor DA, Stryer L (1985) Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments. Proc Natl Acad Sci U S A 82:8813–8817

    Google Scholar 

  201. Zou LB, Yamada K, Tanaka T, Kameyama T, Nabeshima T (1998) Nitric oxide synthase inhibitors impair reference memory formation in a radial arm maze task in rats. Neuropharmacology 37:323–330

    CAS  PubMed  Google Scholar 

  202. Zufall F, Firestein S, Shepherd GM (1994) Cyclic nucleotide-gated ion channels and sensory transduction in olfactory receptor neurons. Annu Rev Biophys Biomol Struct 23:577–607

    CAS  PubMed  Google Scholar 

  203. Zufall F, Shepherd GM, Barnstable CJ (1997) Cyclic nucleotide gated channels as regulators of CNS development and plasticity. Curr Opin Neurobiol 7:404–412

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Catholic University (D3.2 and D1 funds).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Grassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podda, M.V., Grassi, C. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflugers Arch - Eur J Physiol 466, 1241–1257 (2014). https://doi.org/10.1007/s00424-013-1373-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1373-2

Keywords

Navigation