Skip to main content

Advertisement

Log in

Sodium/calcium exchanger is upregulated by sulfide signaling, forms complex with the β1 and β3 but not β2 adrenergic receptors, and induces apoptosis

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) as a novel gasotransmitter regulates variety of processes, including calcium transport systems. Sodium calcium exchanger (NCX) is one of the key players in a regulation calcium homeostasis. Thus, the aims of our work were to determine effect of sulfide signaling on the NCX type 1 (NCX1) expression and function in HeLa cells, to investigate the relationship of β-adrenergic receptors with the NCX1 in the presence and/or absence of H2S, and to determine physiological importance of this potential communication. As a H2S donor, we used morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate—GYY4137. We observed increased levels of the NCX1 mRNA, protein, and activity after 24 h of GYY4137 treatment. This increase was accompanied by elevated cAMP due to the GYY4137 treatment, which was completely abolished, when NCX1 was silenced. Increased cAMP levels would point to upregulation of β-adrenergic receptors. Indeed, GYY4137 increased expression of β1 and β3 (but not β2) adrenergic receptors. These receptors co-precipitated, co-localized with the NCX1, and induced apoptosis in the presence of H2S. Our results suggest that sulfide signaling plays a role in regulation of the NCX1, β1 and β3 adrenergic receptors, their co-localization, and stimulation of apoptosis, which might be of a potential importance in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abe K, Kimura H (1996) The possible role of hydrogen sulphide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    CAS  PubMed  Google Scholar 

  2. Andrikopoulos P, Baba A, Matsuda T, Djamgoz MB, Yaqoob MM, Eccles SA (2011) Ca2+ influx through reverse mode Na+/Ca2+ exchange is critical for vascular endothelial growth factor-mediated extracellular signal-regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J Biol Chem 286:37919–37931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bai Y, Morgan EE, Giovannucci DR, Pierre SV, Philipson KD, Askari A, Liu L (2013) Different roles of the cardiac Na+/Ca2+−exchanger in ouabain-induced inotropy, cell signaling, and hypertrophy. Am J Physiol Heart Circ Physiol 304:H427–H435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Barnes KV, Cheng G, Dawson MM, Menick DR (1997) Cloning of cardiac, kidney, and brain promoters of the feline Ncx1 gene. J Biol Chem 272:11510–11517

    Article  CAS  PubMed  Google Scholar 

  5. Baskar R, Sparatore A, Del Soldato P, Moore PK (2008) Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibits rat vascular smooth muscle cell proliferation. Eur J Pharmacol 594:1–8

    Article  CAS  PubMed  Google Scholar 

  6. Cao Y, Adhikari S, Anq AD, Moore PK, Bhatia M (2006) Mechanism of induction of pancreatic acinar cell apoptosis by hydrogen sulfide. Am J Physiol Cell Physiol 291:C503–C510

    Article  CAS  PubMed  Google Scholar 

  7. Convery MK, Hancox JC (2000) Na+–Ca2+ exchange current from rabbit isolated atrioventricular nodal and ventricular myocytes compared using action potential and ramp waveforms. Acta Physiol Scand 168:393–401

    Article  CAS  PubMed  Google Scholar 

  8. Cuozzo F, Raciti M, Bertelli L, Parente R, Di Renzo L (2012) Pro-death and pro-survival properties of ouabain in U937 lymphoma derived cells. J Exp Clin Canc Res 15:31–95

    Google Scholar 

  9. Diaz-Horta O, Kamagate A, Herchuelz A, Van Eylen F (2002) Na/Ca exchanger overexpression induces endoplasmic reticulum-related apoptosis and caspase-12 activation in insulin releasing BRIN-BD11 cells. Diabetes 51:1815–1824

    Article  CAS  PubMed  Google Scholar 

  10. Diaz-Horta O, Van Eylen F, Herchuelz A (2003) Na/Ca exchanger overexpression induces endoplasmic reticulum stress, caspase-12 release, and apoptosis. Ann New York Acad Sci 1010:430–432

    Article  CAS  Google Scholar 

  11. Elefteriou F, Campbell P, Ma Y (2013) Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int. doi:10.1007/s00223-013-9752-4

    PubMed  Google Scholar 

  12. Fan HN, Wang HJ, Yang-Dan CR, Ren L, Wang C, Li YF, Deng Y (2012) Protective effects of hydrogen sulfide on oxidative stress and fibrosis in hepatic stellate cells. Mol Med Rep. doi:10.3892/mmr.2012.1153

    PubMed Central  Google Scholar 

  13. Fernandes VS, Ribeiro AS, Barahoma MV, Orensanz LM, Martinez-Saenz A, Recio P, Martinez AC, Bustamante S, Carballido J, Garcia-Sacristan A, Prieto D, Hernandez M (2013) Hydrogen sulfide mediated inhibitory neurotransmission to the pig bladder neck: role of KATP channels sensory nerves and calcium signaling. J Urol. doi:10.1016/j.juro.2013.02.103

    Google Scholar 

  14. Frishman WH (2013) ß-Adrenergic blockade in cardiovascular disease. J Cardiovasc Pharmacol Ther 18:310–319

    Article  CAS  PubMed  Google Scholar 

  15. Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295:R1479–R1485

    Article  CAS  PubMed  Google Scholar 

  16. Golden KL, Fan QI, Chen B, Ren J, O’Connor J, Marsh JD (2000) Adrenergic stimulation regulates Na+/Ca2+ exchanger expression in rat cardiac myocytes. J Mol Cell Cardiol 32:611–620

    Article  CAS  PubMed  Google Scholar 

  17. Golden KL, Ren J, O’Connor J, Dean A, DiCarlo SE, Marsh JD (2001) In vivo regulation of Na/Ca exchanger expression by adrenergic effectors. Am J Physiol Heart Circ Physiol 280:H1376–H1382

    CAS  PubMed  Google Scholar 

  18. Goldhaber JI, Philipson KD (2013) Cardiac sodium–calcium exchange and efficient excitation–contraction coupling: implications for heart disease. Adv Exp Med Biol 961:355–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gu C, Ma YC, Benjamin J, Littman D, Chao MV, Huang XY (2000) Apoptotic signaling through the beta-adrenergic receptor. A new Gs effector pathway. J Biol Chem 275:20716–20733

    Google Scholar 

  20. Hanson CJ, Bootman MD, Roderick HL (2004) Cell signaling: IP3 receptors channel calcium into cell death. Curr Biol 14:R933–R935

    Article  CAS  PubMed  Google Scholar 

  21. Hu LF, Lu M, Wu ZY, Wong PT, Bian JS (2009) Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75:27–34

    Article  CAS  PubMed  Google Scholar 

  22. Hudecova S, Kubovcakova L, Kvetnansky R, Kopacek J, Pastorekova S, Novakova M, Knezl V, Tarabova B, Lacinova L, Sulova Z, Breier A, Jurkovicova D, Krizanova O (2007) Modulation of expression of the Na+/Ca2+ exchanger in a heart of rat and mouse under stress. Acta Physiol 190:127–136

    Article  CAS  Google Scholar 

  23. Hudecova S, Lencesova L, Csaderova L, Sedlak J, Bohacova V, Laukova M, Krizanova O (2013) Isoproterenol accelerates apoptosis through the over-expression of the sodium/calcium exchanger in HeLa cells. Gen Physiol Biophys 32:310–323

    Google Scholar 

  24. Hudecova S, Lencesova L, Csaderova L, Sirova M, Cholujova D, Cagala M, Kopacek J, Dobrota D, Pastorekova S, Krizanova O (2011) Chemically mimicked hypoxia modulates gene expression and protein levels of the sodium calcium exchanger in HEK 293 cell line via HIF 1α. Gen Physiol Biophys 30:196–206

    Article  CAS  PubMed  Google Scholar 

  25. Imai T, Ii H, Yaegaki K, Murata T, Sato T, Kamoda T (2009) Oral malodorous compound inhibits osteoblast proliferation. J Periodontal 80:2028–2034

    Article  CAS  Google Scholar 

  26. Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214

    Article  CAS  PubMed  Google Scholar 

  27. Iwai-Kanai E, Hasegawa K, Araki M, Kakita T, Morimoto T, Sasayama S (1999) Alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 100:305–311

    Article  CAS  PubMed  Google Scholar 

  28. Kurata Y, Hisatome I, Shibamoto T (2012) Roles of sarcoplasmic reticulum Ca2+ cycling and Na+/Ca2+ exchanger in sinoatrial node peacemaking: insights from bifurcation analysis of mathematical models. Am J Physiol Heart Circ Physiol 302:H2285–H2300

    Article  CAS  PubMed  Google Scholar 

  29. Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore PK, Wong PT, Bian JS (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 154:116–124

    Article  Google Scholar 

  30. Lencesova L, Hudecova S, Csaderova L, Markova J, Soltysova A, Pastorek M, Sedlak J, Wood ME, Whiteman M, Ondrias K, Krizanova O (2013) Sulphide signalling potentiates apoptosis through the up-regulation of IP3 receptors type 1 and 2. Acta Physiol 208:350–361

    Article  CAS  Google Scholar 

  31. Lencesova L, Sirova M, Csaderova L, Laukova M, Sulova Z, Kvetnansky R, Krizanova O (2010) Changes and role of adrenoceptors in PC12 cells after phenylephrine administration and apoptosis induction. Neurochem Int 57:884–892

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360

    Article  CAS  PubMed  Google Scholar 

  33. Liu YH, Lu M, Hu LF, Wong PTH, Webb GD, Bian JS (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17:141–185. doi:10.1089/ars.2011.4005

    Article  CAS  PubMed  Google Scholar 

  34. Lowry OH, Rosebrough HJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  35. Maeda Y, Aoki Y, Sekiguchi F, Matsunami M, Takahashi T, Nishikawa H, Kawabata A (2009) Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T-type calcium channels. Pain 142:127–132

    Article  CAS  PubMed  Google Scholar 

  36. Mani SK, Egan EA, Addy BK, Grimm M, Kasiganesan H, Thiyagarajan T, Renaud L, Brown JH, Kern CB, Menick DR (2010) Beta-Adrenergic receptor stimulated Ncx1 upregulation is mediated via a CaMKII/AP-1 signaling pathway in adult cardiomyocytes. J Mol Cell Cardiol 48:342–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Moccia F, Bertoni G, Pla AF, Dragoni S, Pupo E, Merlino A, Mancardi D, Munaron L, Tanzi F (2011) Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta. Curr Pharm Biotechnol 12:1416–1426

    Article  CAS  PubMed  Google Scholar 

  38. Momeni HR, Jarahzadeh M (2012) Effect of a voltage sensitive calcium channel blocker and a sodium–calcium exchanger inhibitor on apoptosis of motor neurons in adult spinal cord slices. Cell J 14:171–176

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Muzaffar S, Jeremy JY, Sparatore A, Del Soldato P, Angelini GD, Shukla N (2008) H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: role of protein kinases A and G. Br J Pharmacol 1555:984–994

    Google Scholar 

  40. Nagai Y, Tsugane M, Oka J, Kimura H (2004) Hydrogen sulfide induces waves in strocytes. FASEB J 18:557–559

    CAS  PubMed  Google Scholar 

  41. Nashida T, Takuma K, Fukuda S, Kawasaki T, Takahashi T, Baba A, Ago Y, Matsuda T (2011) The specific Na(+)/Ca(2+) exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells. Neurochem Int 59:51–58

    Article  CAS  PubMed  Google Scholar 

  42. Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, Motohashi H, Yamamoto M, Suematsu M, Kurose H, van der Vliet A, Freeman BA, Shibata T, Uchida K, Kumagai Y, Akaike T (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 8:714–724

    Article  CAS  PubMed  Google Scholar 

  43. Pacak K, Sirova M, Giubellino A, Lencesova L, Csaderova L, Laukova M, Hudecova S, Krizanova O (2012) NF-κB inhibition significantly upregulates the norepinephrine transporter system, causes apoptosis in pheochromocytoma cell lines and prevents metastasis in an animal model. Int J Cancer 131:2445–2455

    Article  CAS  PubMed  Google Scholar 

  44. Pan L, Zhang X, Song K, Wu X, Xu J (2008) Exogenous nitric oxide-induced release of calcium from intracellular IP3 receptor-sensitive stores via S-nitrosylation in respiratory burst-dependent neutrophils. Biochem Biophys Res Commun 377:1320–1325

    Article  CAS  PubMed  Google Scholar 

  45. Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507

    Article  CAS  PubMed  Google Scholar 

  46. Prabhakar NR (2012) Hydrogen sulfide (h2s): a physiologic mediator of carotid body response to hypoxia. Adv Exp Biol 758:109–113

    Article  Google Scholar 

  47. Predmore BL, Lefer DJ (2010) Development of hydrogen sulfide-based therapeutics for cardiovascular disease. J Cardiac Transl Res 3:487–498

    Article  Google Scholar 

  48. Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17:119–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Robinson H, Wray S (2012) A new slow releasing, H2S generating compound, GYY4137 relaxes spontaneous and oxytocin-stimulated contractions of human and rat pregnant myometrium. PLoS One 7(9):e46278. doi:10.1371/journal.pone.0046278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Santulli G, Laccarino G (2013) Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes. Immun Ageing. doi:10.1186/1742-4933-10-10

    PubMed Central  PubMed  Google Scholar 

  51. Shao JL, Wan XH, Chen Y, Bi C, Chen HM, Zhong Y, Heng XH, Qian JQ (2011) H2S protects hippocampal neurons from anoxia-reoxygenation through cAMP-mediated PI3K/Akt/p70S6K cell-survival signaling pathways. J Mol Neurosci 43:453–460

    Article  CAS  PubMed  Google Scholar 

  52. Sirabella R, Secondo A, Pannaccione A, Scorziello A, Valsecchi V (2009) Anoxia-induced NF-κB-dependent upregulation of NCX1 contributes to Ca2+ refilling into endoplasmic reticulum in cortical neurons. Stroke 40:922–929

    Article  CAS  PubMed  Google Scholar 

  53. Smith HS (2009) Hydrogen sulfides involvement in modulating nociception. Pain Physician 12:901–910

    PubMed  Google Scholar 

  54. St Clair JR, Liao Z, Larson ED, Proenza C (2013) PKA-independent activation of lf by cAMP in mouse sinoatrial myocytes. Channels (Austin) 11:7(4)

    Google Scholar 

  55. Staiano RI, Granata F, Secondo A, Petraroli A, Loffredo S, Annunziato L, Triggiani M, Marone G (2013) Human macrophages and monocytes express functional Na(+)/Ca (2+) exchangers 1 and 3. Adv Exp Med Biol 961:317–326

    Article  CAS  PubMed  Google Scholar 

  56. Tang T, Lai NC, Wright AT, Gao MH, Lee P, Guo T, Tang R, McCulloch AD, Hammond HK (2013) Adenylyl cyclase 6 deletion increases mortality during sustained β-adrenergic receptor stimulation. J Mol Cell Cardiol 60:60–67

    Article  CAS  PubMed  Google Scholar 

  57. Tang XQ, Yang CH, Chen J, Yin W, Tian S, Hu B, Feng J, Li Y (2008) Effect of hydrogen sulphide on β-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35:180–186

    CAS  PubMed  Google Scholar 

  58. Tiong CX, Lu M, Bian JS (2010) Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161:467–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Valsecchi V, Pignataro G, Sirabella R, Matrone C, Boscia F, Scorziello A, Sisalli MJ, Esposito E, Zambrano N, Cataldi M, Di Renzo G, Annunziato L (2013) Transcriptional regulation of ncx1 gene in the brain. Adv Exp Med Biol 961:137–145

    Article  CAS  PubMed  Google Scholar 

  60. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  CAS  PubMed  Google Scholar 

  61. Wang R (2012) Physiological implications of hydrogen sulphide: a whiff exploration that blossomed. Physiol Rev 92:791–896

    Article  CAS  PubMed  Google Scholar 

  62. Yang G, Cao K, Wu L, Wang R (2004) Cystathionine gamma-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. J Biol Chem 279:49199–49205

    Article  CAS  PubMed  Google Scholar 

  63. Yang HY, Wu ZY, Wood M, Whiteman M, Bian JS (2013) Hydrogen sulfide attenuates opioid dependence by suppression of adenylate cyclase/cAMP pathway. Antioxid Redox Signal. doi:10.1089/ars.2012.5119

    PubMed Central  Google Scholar 

  64. Yin WL, He JQ, Hu B, Jiang ZS, Tang XQ (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85:269–275

    Article  CAS  PubMed  Google Scholar 

  65. Yong QC, Pan TT, Hu LF, Bian JS (2008) Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts. J Moll Cell Cardiol 44(4):701–710

    Article  CAS  Google Scholar 

  66. Zhang JH, Dong Z, Chu I (2010) Hydrogen sulphide induces apoptosis in human periodontium cells. J Periodontal Res 45:71–78

    Article  CAS  PubMed  Google Scholar 

  67. Zhang LM, Jiang CX, Liu DW (2009) Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res 34:1984–1992

    Article  CAS  PubMed  Google Scholar 

  68. Zhao W, Zhang J, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K (ATP) channel opener. EMBO J 20:6008–6016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants APVV 51-0045-11, VEGA 2/0095/13 and Center of Excellence for Studying Metabolic Aspects of Development, Diagnostics and Treatment of the Oncologic Diseases (CEMAN). Project implementation, DNA-DG: ITMS 26240220058, was supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Krizanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markova, J., Hudecova, S., Soltysova, A. et al. Sodium/calcium exchanger is upregulated by sulfide signaling, forms complex with the β1 and β3 but not β2 adrenergic receptors, and induces apoptosis. Pflugers Arch - Eur J Physiol 466, 1329–1342 (2014). https://doi.org/10.1007/s00424-013-1366-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1366-1

Keywords

Navigation