Skip to main content

Advertisement

Log in

An emerging role for microRNAs in sexually dimorphic neurobiological systems

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Over the past 20 years, our understanding of the basic mechanisms of gene regulation has vastly expanded due to the unexpected roles of small regulatory RNAs, in particular microRNAs (miRNAs). miRNAs add another layer of complexity to the regulation of effector molecules for nearly every physiological process, making them excellent candidate molecules as therapeutic targets, biomarkers, and disease predictors. Hormonal contributions to mature miRNA expression, biosynthetic processing, and downstream functions have only just begun to be investigated. Elucidating the physiological consequences of miRNA sexual dimorphism, and their associated regulatory processes, may be key toward understanding both normal and pathological processes in the brain. This short review provides a basic overview of miRNA biosynthesis, their role in normal brain development, and potential links to neurological diseases. We conclude with a brief discussion of the current knowledge of sex-specific miRNA processes in both the brain and the heart to conceptually integrate the relevance of miRNAs with the overarching theme (“sex differences in health and disease: brain and heart connections”) of this special topics issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambrus AM, Frolov MV (2009) The diverse roles of RNA helicases in RNAi. Cell Cycle 8(21):3500–3505

    Article  PubMed  CAS  Google Scholar 

  2. Babiarz JE, Hsu R, Melton C, Thomas M, Ullian EM, Blelloch R (2011) A role for noncanonical microRNAs in the mammalian brain revealed by phenotypic differences in Dgcr8 versus Dicer1 knockouts and small RNA sequencing. RNA 17(8):1489–1501

    Article  PubMed  CAS  Google Scholar 

  3. Baroukh NN, Van Obberghen E (2009) Function of microRNA-375 and microRNA-124a in pancreas and brain. FEBS J 276(22):6509–6521

    Article  PubMed  CAS  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  5. Baulcombe DC (1996) RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol Biol 32(1–2):79–88

    Article  PubMed  CAS  Google Scholar 

  6. Beato M (1989) Gene regulation by steroid hormones. Cell 56(3):335–344

    Article  PubMed  CAS  Google Scholar 

  7. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336

    Article  PubMed  CAS  Google Scholar 

  8. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217

    Article  PubMed  CAS  Google Scholar 

  9. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153

    PubMed  CAS  Google Scholar 

  10. Bizuayehu TT, Babiak J, Norberg B, Fernandes JM, Johansen SD, Babiak I (2012) Sex-biased miRNA expression in Atlantic halibut (Hippoglossus hippoglossus) brain and gonads. Sex Dev 6(5):257–266

    Article  PubMed  CAS  Google Scholar 

  11. Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88(9):1337–1342

    Article  PubMed  CAS  Google Scholar 

  12. Burney RO, Hamilton AE, Aghajanova L, Vo KC, Nezhat CN, Lessey BA, Giudice LC (2009) MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod 15(10):625–631

    Article  PubMed  CAS  Google Scholar 

  13. Byers AL, Yaffe K, Covinsky KE, Friedman MB, Bruce ML (2010) High occurrence of mood and anxiety disorders among older adults: The National Comorbidity Survey Replication. Arch Gen Psychiatry 67(5):489–496

    Article  PubMed  Google Scholar 

  14. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  PubMed  CAS  Google Scholar 

  15. Cao X, Pfaff SL, Gage FH (2007) A functional study of miR-124 in the developing neural tube. Genes Dev 21(5):531–536

    Article  PubMed  CAS  Google Scholar 

  16. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  PubMed  CAS  Google Scholar 

  17. Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408

    Article  PubMed  CAS  Google Scholar 

  18. Chi S, Zang J, Mele A, Darnell R (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460(7254):479–486

    PubMed  CAS  Google Scholar 

  19. Choi PS, Zakhary L, Choi W-Y, Caron S, Alvarez-Saavedra E, Miska EA, McManus M, Harfe B, Giraldez AJ, Horvitz RH, Schier AF, Dulac C (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57(1):41–55

    Article  PubMed  CAS  Google Scholar 

  20. Colantuoni C, Hyde T, Mitkus S, Joseph A, Sartorius L, Aguirre C, Creswell J, Johnson E, Deep-Soboslay A, Herman M, Lipska B, Weinberger D, Kleinman J (2008) Age-related changes in the expression of schizophrenia susceptibility genes in the human prefrontal cortex. Brain Struct Funct 213(1–2):255–271

    Article  PubMed  Google Scholar 

  21. Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM (2008) Conditional loss of dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28(17):4322–4330

    Article  PubMed  CAS  Google Scholar 

  22. De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135(23):3911–3921

    Article  PubMed  CAS  Google Scholar 

  23. Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, Young WL, Ivey KN, Gao FB (2010) MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6(4):323–335

    Article  PubMed  CAS  Google Scholar 

  24. Earls LR, Fricke RG, Yu J, Berry RB, Baldwin LT, Zakharenko SS (2012) Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J Neurosci 32(41):14132–14144

    Article  PubMed  CAS  Google Scholar 

  25. Erraji-Benchekroun L, Underwood MD, Arango V, Galfalvy H, Pavlidis P, Smyrniotopoulos P, Mann JJ, Sibille E (2005) Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. Biol Psychiatry 57(5):549–558

    Article  PubMed  CAS  Google Scholar 

  26. Favre G, Banta Lavenex P, Lavenex P (2012) miRNA regulation of gene expression: a predictive bioinformatics analysis in the postnatally developing monkey hippocampus. PLoS One 7(8):e43435

    Article  PubMed  CAS  Google Scholar 

  27. Feng J, Sun G, Yan J, Noltner K, Li W, Buzin CH, Longmate J, Heston LL, Rossi J, Sommer SS (2009) Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One 4(7):e6121

    Article  PubMed  CAS  Google Scholar 

  28. Fiedler SD, Carletti MZ, Hong X, Christenson LK (2008) Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 79(6):1030–1037

    Article  PubMed  CAS  Google Scholar 

  29. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  PubMed  CAS  Google Scholar 

  30. Garen A, Kauvar L, Lepesant JA (1977) Roles of ecdysone in Drosophila development. Proc Natl Acad Sci U S A 74(11):5099–5103

    Article  PubMed  CAS  Google Scholar 

  31. Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235(2):491–496

    Article  PubMed  CAS  Google Scholar 

  32. Giraldez AJ (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838

    Article  PubMed  CAS  Google Scholar 

  33. Green M, Cairns M, Wu J, Dragovic M, Jablensky A, Tooney P, Scott R, Carr V (2012) Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Mol Psychiatry. doi:10.1038/mp.2012.84

  34. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144

    Article  PubMed  CAS  Google Scholar 

  35. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    Article  PubMed  CAS  Google Scholar 

  36. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952

    Article  PubMed  CAS  Google Scholar 

  37. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296

    Article  PubMed  CAS  Google Scholar 

  38. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027

    Article  PubMed  CAS  Google Scholar 

  39. Haramati S, Navon I, Issler O, Ezra-Nevo G, Gil S, Zwang R, Hornstein E, Chen A (2011) MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34. J Neurosci 31(40):14191–14203

    Article  PubMed  CAS  Google Scholar 

  40. Hébert S, Horré K, Nicolaï L, Papadopoulou A, Mandemakers W, Silahtaroglu A, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105(17):6415–6420

    Article  PubMed  Google Scholar 

  41. Holsinger R, McLean C, Beyreuther K, Masters C, Evin G (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51(6):783–786

    Article  PubMed  CAS  Google Scholar 

  42. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060

    Article  PubMed  CAS  Google Scholar 

  43. Inukai S, de Lencastre A, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 7(7):e40028

    Article  PubMed  CAS  Google Scholar 

  44. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    Article  PubMed  CAS  Google Scholar 

  45. Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426(6968):845–849

    Article  PubMed  CAS  Google Scholar 

  46. Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RHA, Wilson SW (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8(8):R173

    Article  PubMed  CAS  Google Scholar 

  47. Kato M, Chen X, Inukai S, Zhao H, Slack FJ (2011) Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 17(10):1804–1820

    Article  PubMed  CAS  Google Scholar 

  48. Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35(7):368–376

    Article  PubMed  CAS  Google Scholar 

  49. Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238(11):2800–2812

    Article  PubMed  Google Scholar 

  50. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224

    Article  PubMed  CAS  Google Scholar 

  51. Klinge CM (2012) miRNAs and estrogen action. Trends Endocrinol Metab 23(5):223–233

    Article  PubMed  CAS  Google Scholar 

  52. Koturbash I, Zemp F, Kolb B, Kovalchuk O (2011) Sex-specific radiation-induced microRNAome responses in the hippocampus, cerebellum and frontal cortex in a mouse model. Mutat Res 722(2):114–118

    Article  PubMed  CAS  Google Scholar 

  53. Krichevsky AM (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281

    Article  PubMed  CAS  Google Scholar 

  54. Kumar A, Gibbs J, Beilina A, Dillman A, Kumaran R, Trabzuni D, Ryten M, Walker R, Smith C, Traynor B, Hardy J, Singleton A, Cookson M (2013) Age-associated changes in gene expression in human brain and isolated neurons. Neurobiol Aging 34:1199–1209

    Google Scholar 

  55. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  PubMed  CAS  Google Scholar 

  56. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9(2):175–179

    Article  PubMed  CAS  Google Scholar 

  57. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  PubMed  CAS  Google Scholar 

  58. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864

    Article  PubMed  CAS  Google Scholar 

  59. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  PubMed  CAS  Google Scholar 

  60. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  PubMed  CAS  Google Scholar 

  61. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  PubMed  CAS  Google Scholar 

  62. Lee C, Weindruch R, Prolla T (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25(3):294–297

    Article  PubMed  CAS  Google Scholar 

  63. Lehrbach NJ, Castro C, Murfitt KJ, Abreu-Goodger C, Griffin JL, Miska EA (2012) Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans. RNA 18(12):2220–2235

    Article  PubMed  CAS  Google Scholar 

  64. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  PubMed  CAS  Google Scholar 

  65. Li N, Bates D, An J, Terry D, Wang E (2011) Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging 32(5):944–955

    Article  PubMed  CAS  Google Scholar 

  66. Li Y, Wang F, Lee JA, Gao FB (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 20(20):2793–2805

    Article  PubMed  CAS  Google Scholar 

  67. Lippi G, Steinert JR, Marczylo EL, D’Oro S, Fiore R, Forsythe ID, Schratt G, Zoli M, Nicotera P, Young KW (2011) Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. J Cell Biol 194(6):889–904

    Article  PubMed  CAS  Google Scholar 

  68. Liu Q, Paroo Z (2010) Biochemical principles of small RNA pathways. Annu Rev Biochem 79:295–319

    Article  PubMed  CAS  Google Scholar 

  69. Loerch P, Lu T, Dakin K, Vann J, Isaacs A, Geula C, Wang J, Pan Y, Gabuzda D, Li C, Prolla T, Yankner B (2008) Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 3(10)

  70. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891

    Article  PubMed  CAS  Google Scholar 

  71. Lugli G, Larson J, Demars MP, Smalheiser NR (2012) Primary microRNA precursor transcripts are localized at post-synaptic densities in adult mouse forebrain. J Neurochem 123(4):459–466

    Article  PubMed  CAS  Google Scholar 

  72. Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94(4):896–905

    Article  PubMed  CAS  Google Scholar 

  73. Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106(2):650–661

    Article  PubMed  CAS  Google Scholar 

  74. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98

    Article  PubMed  CAS  Google Scholar 

  75. Magill S, Cambronne X, Luikart B, Lioy D, Leighton B, Westbrook G, Mandel G, Goodman R (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 107(47):20382–20387

    Article  PubMed  CAS  Google Scholar 

  76. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative Pre-mRNA splicing. Mol Cell 27(3):435–448

    Article  PubMed  CAS  Google Scholar 

  77. Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22(12):3879–3889

    Article  PubMed  CAS  Google Scholar 

  78. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24

    Article  PubMed  CAS  Google Scholar 

  79. McLoughlin HS, Fineberg SK, Ghosh LL, Tecedor L, Davidson BL (2012) Dicer is required for proliferation, viability, migration and differentiation in corticoneurogenesis. Neuroscience 223:285–295

    Article  PubMed  CAS  Google Scholar 

  80. McPherson S, Back C, Buckwalter JG, Cummings JL (1999) Gender-related cognitive deficits in Alzheimer’s disease. Int Psychogeriatr 11(2):117–122

    Article  PubMed  CAS  Google Scholar 

  81. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  PubMed  CAS  Google Scholar 

  82. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    Article  PubMed  CAS  Google Scholar 

  83. Mellios N, Galdzicka M, Ginns E, Baker SP, Rogaev E, Xu J, Akbarian S (2012) Gender-specific reduction of estrogen-sensitive small RNA, miR-30b, in subjects with schizophrenia. Schizophr Bull 38(3):433–443

    Article  PubMed  Google Scholar 

  84. Mellios N, Sugihara H, Castro J, Banerjee A, Le C, Kumar A, Crawford B, Strathmann J, Tropea D, Levine S, Edbauer D, Sur M (2011) miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci 14(10):1240–1242

    Article  PubMed  CAS  Google Scholar 

  85. Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J, Willoughby D, Kenny PJ, Elsworth JD, Lawrence MS, Roth RH, Edbauer D, Kleiman RJ, Wahlestedt C (2012) MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci U S A 109(8):3125–3130

    Article  PubMed  CAS  Google Scholar 

  86. Mishima T, Takizawa T, Luo SS, Ishibashi O, Kawahigashi Y, Mizuguchi Y, Ishikawa T, Mori M, Kanda T, Goto T (2008) MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction 136(6):811–822

    Article  PubMed  CAS  Google Scholar 

  87. Morgan CP, Bale TL (2011) Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci 31(33):11748–11755

    Article  PubMed  CAS  Google Scholar 

  88. Narayanan R, Jiang J, Gusev Y, Jones A, Kearbey JD, Miller DD, Schmittgen TD, Dalton JT (2010) MicroRNAs are mediators of androgen action in prostate and muscle. PLoS One 5(10):e13637

    Article  PubMed  CAS  Google Scholar 

  89. Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman A, Evans M (2010) microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5(5)

  90. Nothnick WB, Healy C (2010) Estrogen induces distinct patterns of microRNA expression within the mouse uterus. Reprod Sci 17(11):987–994

    Article  PubMed  CAS  Google Scholar 

  91. Ober C, Loisel DA, Gilad Y (2008) Sex-specific genetic architecture of human disease. Nat Rev Genet 9(12):911–922

    Article  PubMed  CAS  Google Scholar 

  92. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216(2):671–680

    Article  PubMed  CAS  Google Scholar 

  93. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346

    Article  PubMed  CAS  Google Scholar 

  94. Pan Q, Luo X, Chegini N (2008) Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 12(1):227–240

    Article  PubMed  CAS  Google Scholar 

  95. Pan Q, Luo X, Toloubeydokhti T, Chegini N (2007) The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod 13(11):797–806

    Article  PubMed  CAS  Google Scholar 

  96. Paris O, Ferraro L, Grober OM, Ravo M, De Filippo MR, Giurato G, Nassa G, Tarallo R, Cantarella C, Rizzo F, Di Benedetto A, Mottolese M, Benes V, Ambrosino C, Nola E, Weisz A (2012) Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 31(38):4196–4206

    Article  PubMed  CAS  Google Scholar 

  97. Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin T, Gordon V, Teng Z-Q, Zhao X, Fulga T, Van Vactor D, Bordey A (2012) miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One 7(5)

  98. Plasterk RHA (2006) Micro RNAs in animal development. Cell 124(5):877–881

    Article  PubMed  CAS  Google Scholar 

  99. Qiu R, Liu K, Liu Y, Mo W, Flynt AS, Patton JG, Kar A, Wu JY, He R (2009) The role of miR-124a in early development of the Xenopus eye. Mech Dev 126(10):804–816

    Article  PubMed  CAS  Google Scholar 

  100. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  PubMed  CAS  Google Scholar 

  101. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  PubMed  CAS  Google Scholar 

  102. Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Muranishi Y, Irie S, Uneo S, Koyasu T, Matsui R, Chérasse Y, Urade Y, Watanabe D, Kondo M, Yamashita T, Furukawa T (2011) miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 14(9):1125–1134

    Article  PubMed  CAS  Google Scholar 

  103. Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204(7):1553–1558

    Article  PubMed  CAS  Google Scholar 

  104. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289

    Article  PubMed  CAS  Google Scholar 

  105. Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V (2002) The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev Biol 244(1):170–179

    Article  PubMed  CAS  Google Scholar 

  106. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V (2003) Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-complex gene activity. Dev Biol 259(1):9–18

    Article  PubMed  CAS  Google Scholar 

  107. Sheinerman KS, Tsivinsky VG, Crawford F, Mullan MJ, Abdullah L, Umansky SR (2012) Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY) 4(9):590–605

    CAS  Google Scholar 

  108. Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J (2010) Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 36(4):320–330

    Article  PubMed  CAS  Google Scholar 

  109. Siegel C, Li J, Liu F, Benashski SE, McCullough LD (2011) miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A 108(28):11662–11667

    Article  PubMed  CAS  Google Scholar 

  110. Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y (2012) MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One 7(3):e33201

    Article  PubMed  CAS  Google Scholar 

  111. Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, Chen W, Khaitovich P (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 20(9):1207–1218

    Article  PubMed  CAS  Google Scholar 

  112. Somel M, Liu X, Tang L, Yan Z, Hu H, Guo S, Jiang X, Zhang X, Xu G, Xie G, Li N, Hu Y, Chen W, Paabo S, Khaitovich P (2011) MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol 9(12):e1001214

    Article  PubMed  CAS  Google Scholar 

  113. Stauffer BL, Sobus RD, Sucharov CC (2011) Sex differences in cardiomyocyte connexin43 expression. J Cardiovasc Pharmacol 58(1):32–39

    Article  PubMed  CAS  Google Scholar 

  114. Steffens DC, Fisher GG, Langa KM, Potter GG, Plassman BL (2009) Prevalence of depression among older Americans: the aging, demographics and memory study. Int Psychogeriatr 21(5):879–888

    Article  PubMed  Google Scholar 

  115. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40(Web Server issue):W498–W504

    Article  PubMed  CAS  Google Scholar 

  116. Vreeburg SA, Hoogendijk WJ, van Pelt J, Derijk RH, Verhagen JC, van Dyck R, Smit JH, Zitman FG, Penninx BW (2009) Major depressive disorder and hypothalamic–pituitary–adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry 66(6):617–626

    Article  PubMed  CAS  Google Scholar 

  117. Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121(2):193–205

    Article  PubMed  Google Scholar 

  118. Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80(4–5):268–273

    Article  PubMed  CAS  Google Scholar 

  119. Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG, Joyce PR, Karam EG, Lee CK, Lellouch J, Lepine JP, Newman SC, Rubio-Stipec M, Wells JE, Wickramaratne PJ, Wittchen H, Yeh EK (1996) Cross-national epidemiology of major depression and bipolar disorder. JAMA 276(4):293–299

    Article  PubMed  CAS  Google Scholar 

  120. Woltering JM, Durston AJ (2008) MiR-10 represses HoxB1a and HoxB3a in zebrafish. PLoS One 3(1):e1396

    Article  PubMed  CAS  Google Scholar 

  121. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491

    Article  PubMed  CAS  Google Scholar 

  122. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  PubMed  CAS  Google Scholar 

  123. Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17(1):17–23

    Article  PubMed  CAS  Google Scholar 

  124. Zhu H-C, Wang L-M, Wang M, Song B, Tan S, Teng J-F, Duan D-X (2012) MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res Bull 88(6):596–601

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni R. Pak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pak, T.R., Rao, Y.S., Prins, S.A. et al. An emerging role for microRNAs in sexually dimorphic neurobiological systems. Pflugers Arch - Eur J Physiol 465, 655–667 (2013). https://doi.org/10.1007/s00424-013-1227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1227-y

Keywords

Navigation