Skip to main content

Advertisement

Log in

The role of chemosensitive afferent nerves and TRP ion channels in the pathomechanism of headaches

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The involvement of trigeminovascular afferent nerves in the pathomechanism of primary headaches is well established, but a pivotal role of a particular class of primary sensory neurons has not been advocated. This review focuses on the evidence that supports the critical involvement of transient receptor potential (TRP) channels in the pathophysiology of primary headaches, in particular, migraine. Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 receptors sensitive to vanilloids and other irritants are localized on chemosensitive afferent nerves, and they are involved in meningeal nociceptive and vascular responses involving neurogenic dural vasodilatation and plasma extravasation. The concept of the trigeminal nocisensor complex is put forward which involves the trigeminal chemosensitive afferent fibers/neurons equipped with specific nocisensor molecules, the elements of the meningeal microcirculatory system, and the dural mast cells. It is suggested that the activation level of this complex may explain some of the specific features of migraine headache. Pharmacological modulation of TRP channel function may offer a novel approach to the management of head pain, in particular, migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andrè E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M, Baraldi PG, Poole DP, Bunnett NW, Geppetti P, Patacchini R (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 118:2574–2582

    PubMed  Google Scholar 

  2. Andres KH, von Düring M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl) 175:289–301

    CAS  Google Scholar 

  3. Arvier PT, Chahl LA, Ladd RJ (1977) Modification by capsaicin and compound 48/80 of dye leakage induced by irritants in the rat. Br J Pharmacol 59:61–68

    PubMed  CAS  Google Scholar 

  4. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    PubMed  CAS  Google Scholar 

  5. Bartsch T, Goadsby PJ (2003) Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain 126(Pt 8):1801–1813

    PubMed  CAS  Google Scholar 

  6. Baylie RL, Brayden JE (2011) TRPV channels and vascular function. Acta Physiol (Oxf) 203:99–116

    CAS  Google Scholar 

  7. Belvisi MG, Dubuis E, Birrell MA (2011) Transient receptor potential A1 channels: insights into cough and airway inflammatory disease. Chest 140:1040–1047

    PubMed  CAS  Google Scholar 

  8. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910

    PubMed  CAS  Google Scholar 

  9. Blumenfeld A, Evans RW (2012) OnabotulinumtoxinA for chronic migraine. Headache 52:142–148

    PubMed  Google Scholar 

  10. Bolay H, Moskowitz MA (2002) Mechanisms of pain modulation in chronic syndromes. Neurology 59(5 Suppl 2):S2–S7

    PubMed  CAS  Google Scholar 

  11. Brain SD (2011) TRPV1 and TRPA1 channels in inflammatory pain: elucidating mechanisms. Ann N Y Acad Sci 1245:36–37

    PubMed  Google Scholar 

  12. Breese NM, George AC, Pauers LE, Stucky CL (2005) Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 115:37–49

    PubMed  CAS  Google Scholar 

  13. Burstein R, Jakubowski M, Rauch SD (2011) The science of migraine. J Vestib Res 21:305–314

    PubMed  Google Scholar 

  14. Buzzi MG, Bonamini M, Moskowitz MA (1995) Neurogenic model of migraine. Cephalalgia 15:277–280

    PubMed  CAS  Google Scholar 

  15. Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Premkumar LS (2012) Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS One 7(5):e38005

    PubMed  CAS  Google Scholar 

  16. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    PubMed  CAS  Google Scholar 

  17. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  18. Cavallotti D, Artico M, De Santis S, Iannetti G, Cavallotti C (1998) Catecholaminergic innervation of the human dura mater involved in headache. Headache 38:352–355

    PubMed  CAS  Google Scholar 

  19. Cavanaugh DJ, Chesler AT, Bráz JM, Shah NM, Julius D, Basbaum AI (2011) Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J Neurosci 31:10119–10127

    PubMed  CAS  Google Scholar 

  20. Chen Y (2009) Advances in the pathophysiology of tension-type headache: from stress to central sensitization. Curr Pain Headache Rep 13:484–494

    PubMed  Google Scholar 

  21. Choi MJ, Jin Z, Park YS, Rhee YK, Jin YH (2011) Transient receptor potential (TRP) A1 activated currents in TRPV1 and cholecystokinin-sensitive cranial visceral afferent neurons. Brain Res 1383:36–42

    PubMed  CAS  Google Scholar 

  22. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    PubMed  CAS  Google Scholar 

  23. Cortright DN, Szallasi A (2009) The role of the vanilloid and related receptor sin nociceptor function and neuroimmune regulation. In: Jancsó G (ed) Neuroimmune biology, vol 8, 1st edn, Neurogenic Inflammation in Health and Disease. Elsevier, Amsterdam, pp 101–120

    Google Scholar 

  24. Couture R, Cuello AC (1984) Studies on the trigeminal antidromic vasodilatation and plasma extravasation in the rat. J Physiol 346:273–285

    PubMed  CAS  Google Scholar 

  25. Cruz-Orengo L, Dhaka A, Heuermann RJ, Young TJ, Montana MC, Cavanaugh EJ, Kim D, Story GM (2008) Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol Pain 4:30

    PubMed  Google Scholar 

  26. Csont T, Csonka C, Kovács P, Jancsó G, Ferdinandy P (2003) Capsaicin-sensitive sensory neurons regulate myocardial nitric oxide and cGMP signaling. Eur J Pharmacol 476:107–113

    PubMed  CAS  Google Scholar 

  27. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    PubMed  CAS  Google Scholar 

  28. De Petrocellis L, Chu CJ, Moriello AS, Kellner JC, Walker JM, Di Marzo V (2004) Actions of two naturally occurring saturated N-acyldopamines on transient receptor potential vanilloid 1 (TRPV1) channels. Br J Pharmacol 143:251–256

    PubMed  Google Scholar 

  29. Diener HC, RPR100893 Study Group (2003) RPR100893, a substance-P antagonist, is not effective in the treatment of migraine attacks. Cephalalgia 23:183–185

    PubMed  Google Scholar 

  30. Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC (1991) Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience 44:97–112

    PubMed  CAS  Google Scholar 

  31. Donaldson LF, Harmar AJ, McQueen DS, Seckl JR (1992) Increased expression of preprotachykinin, calcitonin gene-related peptide, but not vasoactive intestinal peptide messenger RNA in dorsal root ganglia during the development of adjuvant monoarthritis in the rat. Brain Res Mol Brain Res 16:143–149

    PubMed  CAS  Google Scholar 

  32. Duggan AW, Morton CR, Zhao ZQ, Hendry IA (1987) Noxious heating of the skin releases immunoreactive substance P in the substantia gelatinosa of the cat: a study with antibody microprobes. Brain Res 403:345–349

    PubMed  CAS  Google Scholar 

  33. Dux M, Jancsó G, Sann H, Pierau FK (1996) Inhibition of the neurogenic inflammatory response by lidocaine in rat skin. Inflamm Res 45:10–13

    PubMed  CAS  Google Scholar 

  34. Dux M, Sántha P, Jancsó G (2003) Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat. J Physiol 552:859–867

    PubMed  CAS  Google Scholar 

  35. Dux M, Rosta J, Pintér S, Sántha P, Jancsó G (2007) Loss of capsaicin-induced meningeal neurogenic sensory vasodilatation in diabetic rats. Neuroscience 150:194–201

    PubMed  CAS  Google Scholar 

  36. Dux M, Rosta J, Sántha P, Jancsó G (2009) Involvement of capsaicin-sensitive afferent nerves in the proteinase-activated receptor 2-mediated vasodilatation in the rat dura mater. Neuroscience 161:887–894

    PubMed  CAS  Google Scholar 

  37. Dux M, Rosta J, Jancsó G (2011) Capsaicin-sensitive nociceptive innervation of the dura mater: implications for the pathomechanism of headache. Anti Inflamm Anti Allergy Agents Med Chem 10:31–42

    CAS  Google Scholar 

  38. Edvinsson L, Uddman R (1981) Adrenergic, cholinergic and peptidergic nerve fibres in dura mater—involvement in headache? Cephalalgia 1:175–179

    PubMed  CAS  Google Scholar 

  39. Edvinsson L, Alm R, Shaw D, Rutledge RZ, Koblan KS, Longmore J, Kane SA (2002) Effect of the CGRP receptor antagonist BIBN4096BS in human cerebral, coronary and omental arteries and in SK-N-MC cells. Eur J Pharmacol 434:49–53

    PubMed  CAS  Google Scholar 

  40. Eid SR (2011) Therapeutic targeting of TRP channels—the TR(i)P to pain relief. Curr Top Med Chem 11:2118–2130

    PubMed  CAS  Google Scholar 

  41. Elekes K, Helyes Z, Németh J, Sándor K, Pozsgai G, Kereskai L, Börzsei R, Pintér E, Szabó A, Szolcsányi J (2007) Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse. Regul Pept 141:44–54

    PubMed  CAS  Google Scholar 

  42. Escott KJ, Brain SD (1993) Effect of a calcitonin gene-related peptide antagonist (CGRP8-37) on skin vasodilatation and oedema induced by stimulation of the rat saphenous nerve. Br J Pharmacol 110:772–776

    PubMed  CAS  Google Scholar 

  43. Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De Ridder D, Nilius B, Voets T, Talavera K (2011) The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol 21:316–321

    PubMed  CAS  Google Scholar 

  44. Feindel W, Penfield W, McNaughton F (1960) The tentorial nerves and localization of intracranial pain in man. Neurology 10:555–563

    PubMed  CAS  Google Scholar 

  45. Fischer MJ, Reeh PW (2007) Sensitization to heat through G-protein-coupled receptor pathways in the isolated sciatic mouse nerve. Eur J Neurosci 25:3570–3575

    PubMed  Google Scholar 

  46. Fricke B, Andres KH, Von Düring M (2001) Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Tech 53:96–105

    PubMed  CAS  Google Scholar 

  47. Fujita F, Uchida K, Moriyama T, Shima A, Shibasaki K, Inada H, Sokabe T, Tominaga M (2008) Intracellular alkalization causes pain sensation through activation of TRPA1 in mice. J Clin Invest 118:4049–4057

    PubMed  CAS  Google Scholar 

  48. Gamse R, Holzer P, Lembeck F (1980) Decrease of substance P in primary afferent neurons and impairment of neurogenic plasma extravasation by capsaicin. Br J Pharmacol 68:207–213

    PubMed  CAS  Google Scholar 

  49. Gamse R, Posch M, Saria A, Jancsó G (1987) Several mediators appear to interact in neurogenic inflammation. Acta Physiol Hung 69:343–354

    PubMed  CAS  Google Scholar 

  50. Geppetti P, Materazzi S, Nicoletti P (2006) The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur J Pharmacol 533:207–214

    PubMed  CAS  Google Scholar 

  51. Goadsby PJ (2007) Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med 13:39–44

    PubMed  CAS  Google Scholar 

  52. Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187

    PubMed  CAS  Google Scholar 

  53. Gottselig R, Messlinger K (2004) Noxious chemical stimulation of rat facial mucosa increases intracranial blood flow through a trigemino-parasympathetic reflex—an experimental model for vascular dysfunctions in cluster headache. Cephalalgia 24:206–214

    PubMed  CAS  Google Scholar 

  54. Gregus AM, Doolen S, Dumlao DS, Buczynski MW, Takasusuki T, Fitzsimmons BL, Hua XY, Taylor BK, Dennis EA, Yaksh TL (2012) Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc Natl Acad Sci U S A 109:6721–6726

    PubMed  CAS  Google Scholar 

  55. He SH (2004) Key role of mast cells and their major secretory products in inflammatory bowel disease. World J Gastroenterol 10:309–318

    PubMed  CAS  Google Scholar 

  56. Hökfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptidergic neurones. Nature 284:515–521

    PubMed  Google Scholar 

  57. Imamura K, Takeshima T, Fusayasu E, Nakashima K (2008) Increased plasma matrix metalloproteinase-9 levels in migraineurs. Headache 48:135–139

    PubMed  Google Scholar 

  58. Immke DC, Gavva NR (2006) The TRPV1 receptor and nociception. Semin Cell Dev Biol 17:582–591

    PubMed  CAS  Google Scholar 

  59. Jancsó G, Király E (1980) Distribution of chemosensitive primary sensory afferents in the central nervous system of the rat. J Comp Neurol 190:781–792

    PubMed  Google Scholar 

  60. Jancsó N, Jancsó-Gábor A, Szolcsányi J (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 31:138–151

    PubMed  Google Scholar 

  61. Jancsó G, Király E, Jancsó-Gábor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743

    PubMed  Google Scholar 

  62. Jancsó G, Hökfelt T, Lundberg JM, Kiraly E, Halász N, Nilsson G, Terenius L, Rehfeld J, Steinbusch H, Verhofstad A, Elde R, Said S, Brown M (1981) Immunohistochemical studies on the effect of capsaicin on spinal and medullary peptide and monoamine neurons using antisera to substance P, gastrin/CCK, somatostatin, VIP, enkephalin, neurotensin and 5-hydroxytryptamine. J Neurocytol 10:963–980

    PubMed  Google Scholar 

  63. Jancsó G, Obál F Jr, Tóth-Kása I, Katona M, Husz S (1985) The modulation of cutaneous inflammatory reactions by peptide-containing sensory nerves. Int J Tissue React 7:449–457

    PubMed  Google Scholar 

  64. Jancsó G, Katona M, Horváth V, Sántha P, Nagy J (2009) Sensory nerves as modulators of cutaneous inflammatory reactions in health and disease. In: Jancsó G (ed) Neuroimmune biology, vol 8, 1st edn, Neurogenic Inflammation in Health and Disease. Elsevier, Amsterdam, pp 3–38

    Google Scholar 

  65. Johnson AR, Erdös EG (1973) Release of histamine from mast cells by vasoactive peptides. Proc Soc Exp Biol Med 142:1252–1256

    PubMed  CAS  Google Scholar 

  66. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    PubMed  CAS  Google Scholar 

  67. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    PubMed  CAS  Google Scholar 

  68. Katona M, Boros K, Sántha P, Ferdinandy P, Dux M, Jancsó G (2004) Selective sensory denervation by capsaicin aggravates adriamycin-induced cardiomyopathy in rats. Naunyn Schmiedeberg’s Arch Pharmacol 370:436–443

    CAS  Google Scholar 

  69. Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Sakagami M, Noguchi K (2006) Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J Neurosci 26:8680–8690

    PubMed  CAS  Google Scholar 

  70. Keller JT, Marfurt CF, Dimlich RV, Tierney BE (1989) Sympathetic innervation of the supratentorial dura mater of the rat. J Comp Neurol 290:310–321

    PubMed  CAS  Google Scholar 

  71. Kim YS, Son JY, Kim TH, Paik SK, Dai Y, Noguchi K, Ahn DK, Bae YC (2010) Expression of transient receptor potential ankyrin 1 (TRPA1) in the rat trigeminal sensory afferents and spinal dorsal horn. J Comp Neurol 518:687–698

    PubMed  CAS  Google Scholar 

  72. Király E, Jancsó G, Hajós M (1991) Possible morphological correlates of capsaicin desensitization. Brain Res 540:279–282

    PubMed  Google Scholar 

  73. Knotkova H, Pappagallo M, Szallasi A (2008) Capsaicin (TRPV1 agonist) therapy for pain relief: farewell or revival? Clin J Pain 24:142–154

    PubMed  Google Scholar 

  74. Knyihár-Csillik E, Tajti J, Samsam M, Sáry G, Buzás P, Vécsei L (1998) Depletion of calcitonin gene-related peptide from the caudal trigeminal nucleus of the rat after electrical stimulation of the Gasserian ganglion. Exp Brain Res 118:111–114

    PubMed  Google Scholar 

  75. Kosaras B, Jakubowski M, Kainz V, Burstein R (2009) Sensory innervation of the calvarial bones of the mouse. J Comp Neurol 515:331–348

    PubMed  Google Scholar 

  76. Kunkler PE, Ballard CJ, Oxford GS, Hurley JH (2011) TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain 152:38–44

    PubMed  CAS  Google Scholar 

  77. Kurosawa M, Messlinger K, Pawlak M, Schmidt RF (1995) Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 114:1397–1402

    PubMed  CAS  Google Scholar 

  78. Lauritzen M (1994) Pathophysiology of the migraine aura. The spreading depression theory. Brain 117(Pt 1):199–210

    PubMed  Google Scholar 

  79. Lawson SN, Perry MJ, Prabhakar E, McCarthy PW (1993) Primary sensory neurones: neurofilament, neuropeptides, and conduction velocity. Brain Res Bull 30:239–243

    PubMed  CAS  Google Scholar 

  80. Levy D, Strassman AM, Burstein R (2009) A critical view on the role of migraine triggers in the genesis of migraine pain. Headache 49:953–957

    PubMed  Google Scholar 

  81. Li WW, Guo TZ, Liang DY, Sun Y, Kingery WS, Clark JD (2012) Substance P signaling controls mast cell activation, degranulation, and nociceptive sensitization in a rat fracture model of complex regional pain syndrome. Anesthesiology 116:882–895

    PubMed  CAS  Google Scholar 

  82. Liu M, Willmott NJ, Michael GJ, Priestley JV (2004) Differential pH and capsaicin responses of Griffonia simplicifolia IB4 (IB4)-positive and IB4-negative small sensory neurons. Neuroscience 127:659–672

    PubMed  CAS  Google Scholar 

  83. Lopshire JC, Nicol GD (1998) The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies. J Neurosci 18:6081–6092

    PubMed  CAS  Google Scholar 

  84. Lundberg JM, Saria A (1983) Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants. Nature 302:251–253

    PubMed  CAS  Google Scholar 

  85. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15:929–934

    PubMed  CAS  Google Scholar 

  86. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    PubMed  CAS  Google Scholar 

  87. Maggi CA, Meli A (1988) The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 19:1–43

    PubMed  CAS  Google Scholar 

  88. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104:13525–13530

    PubMed  CAS  Google Scholar 

  89. Meents JE, Neeb L, Reuter U (2010) TRPV1 in migraine pathophysiology. Trends Mol Med 16:153–159

    PubMed  CAS  Google Scholar 

  90. Messlinger K, Ellrich J (2001) Meningeal nociception: electrophysiological studies related to headache and referred pain. Microsc Res Tech 53:129–137

    PubMed  CAS  Google Scholar 

  91. Messlinger K, Hanesch U, Baumgärtel M, Trost B, Schmidt RF (1993) Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol 188:219–237

    PubMed  CAS  Google Scholar 

  92. Mione MC, Cavanagh JFR, Kirkpatrick KA, Burnstock G (1992) Plasticity in expression of calcitonin gene-related peptide and substance P immunoreactivity in ganglia and fibres following guanethidine and/or capsaicin denervation. Cell Tissue Res 268:491–504

    PubMed  CAS  Google Scholar 

  93. Mizumura K, Sugiura T, Katanosaka K, Banik RK, Kozaki Y (2009) Excitation and sensitization of nociceptors by bradykinin: what do we know? Exp Brain Res 196:53–65

    PubMed  CAS  Google Scholar 

  94. Moreno MJ, Abounader R, Hébert E, Doods H, Hamel E (2002) Efficacy of the non-peptide CGRP receptor antagonist BIBN4096BS in blocking CGRP-induced dilations in human and bovine cerebral arteries: potential implications in acute migraine treatment. Neuropharmacology 42:568–576

    PubMed  CAS  Google Scholar 

  95. Nagy I, Sántha P, Jancsó G, Urbán L (2004) The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 500:351–369

    PubMed  CAS  Google Scholar 

  96. Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andrè E, Preti D, Avonto C, Sadofsky L, Di Marzo V, De Petrocellis L, Dussor G, Porreca F, Taglialatela-Scafati O, Appendino G, Nilius B, Geppetti P (2012) The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system. Brain 135(Pt 2):376–390

    PubMed  Google Scholar 

  97. Negro A, Rocchietti-March M, Fiorillo M, Martelletti P (2011) Chronic migraine: current concepts and ongoing treatments. Eur Rev Med Pharmacol Sci 15:1401–1420

    PubMed  CAS  Google Scholar 

  98. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    PubMed  CAS  Google Scholar 

  99. Nozaki K, Moskowitz MA, Boccalini P (1992) CP-93,129, sumatriptan, dihydroergotamine block c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges. Br J Pharmacol 106:409–415

    PubMed  CAS  Google Scholar 

  100. Ogawa H, Takahashi K, Miura S, Imagawa T, Saito S, Tominaga M, Ohta T (2012) H(2)S functions as a nociceptive messenger through transient receptor potential ankyrin 1 (TRPA1) activation. Neuroscience 218:335–343

    PubMed  CAS  Google Scholar 

  101. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, Pollentier S, Lesko LM, BIBN 4096 BS Clinical Proof of Concept Study Group (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110

    PubMed  CAS  Google Scholar 

  102. Penfield W, McNaughton FL (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiatr 44:43–75

    Google Scholar 

  103. Pernow B (1985) Role of tachykinins in neurogenic inflammation. J Immunol 135(2 Suppl):812s–815s

    PubMed  CAS  Google Scholar 

  104. Pethö G, Derow A, Reeh PW (2001) Bradykinin-induced nociceptor sensitization to heat is mediated by cyclooxygenase products in isolated rat skin. Eur J Neurosci 14:210–218

    PubMed  Google Scholar 

  105. Price TJ, Flores CM (2007) Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain 8:263–272

    PubMed  CAS  Google Scholar 

  106. Ray BS, Wolff HG (1940) Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg 41:813–856

    Google Scholar 

  107. Robertson CE, Garza I (2012) Critical analysis of the use of onabotulinumtoxinA (botulinum toxin type A) in migraine. Neuropsychol Dis Treat 8:35–48

    CAS  Google Scholar 

  108. Rózsa Z, Sharkey KA, Jancsó G, Varró V (1986) Evidence for a role of capsaicin-sensitive mucosal afferent nerves in the regulation of mesenteric blood flow in the dog. Gastroenterology 90:906–910

    PubMed  Google Scholar 

  109. Salas MM, Hargreaves KM, Akopian AN (2009) TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1. Eur J Neurosci 29:1568–1578

    PubMed  Google Scholar 

  110. Salvatore CA, Hershey JC, Corcoran HA, Fay JF, JohnstonVK MEL, Mosser SD, Burgey CS, Paone DV, Shaw AW, Graham SL, Vacca JP, Williams TM, Koblan KS, Kane SA (2008) Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther 324:416–421

    PubMed  CAS  Google Scholar 

  111. Samsam M, Coveñas R, Csillik B, Ahangari R, Yajeya J, Riquelme R, Narváez JA, Tramu G (2001) Depletion of substance P, neurokinin A and calcitonin gene-related peptide from the contralateral and ipsilateral caudal trigeminal nucleus following unilateral electrical stimulation of the trigeminal ganglion; a possible neurophysiological and neuroanatomical link to generalized head pain. J Chem Neuroanat 21:161–169

    PubMed  CAS  Google Scholar 

  112. Sann H, Pierau FK (1998) Efferent functions of C-fiber nociceptors. Z Rheumatol 57(Suppl 2):8–13

    PubMed  CAS  Google Scholar 

  113. Sántha P, Oszlács O, Dux M, Dobos I, Jancsó G (2010) Inhibition of glucosylceramide synthase reversibly decreases the capsaicin-induced activation and TRPV1 expression of cultured dorsal root ganglion neurons. Pain 150:103–112

    PubMed  Google Scholar 

  114. Saria A, Lundberg JM, Skofitsch G, Lembeck F (1983) Vascular protein linkage in various tissue induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn Schmiedeberg’s Arch Pharmacol 324:212–218

    CAS  Google Scholar 

  115. Shimazawa M, Hara H (1996) An experimental model of migraine with aura: cortical hypoperfusion following spreading depression in the awake and freely moving rat. Clin Exp Pharmacol Physiol 23:890–892

    PubMed  CAS  Google Scholar 

  116. Shimizu T, Toriumi H, Sato H, Shibata M, Nagata E, Gotoh K, Suzuki N (2007) Distribution and origin of TRPV1 receptor-containing nerve fibers in the dura mater of rat. Brain Res 1173:84–91

    PubMed  CAS  Google Scholar 

  117. Singh Tahim A, Sántha P, Nagy I (2005) Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. Neuroscience 136:539–548

    PubMed  CAS  Google Scholar 

  118. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    PubMed  CAS  Google Scholar 

  119. Strassman AM, Levy D (2006) Response properties of dural nociceptors in relation to headache. J Neurophysiol 95:1298–1306

    PubMed  Google Scholar 

  120. Strassman AM, Mason P, Moskowitz MA, Maciewicz RJ (1986) Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res 379:242–250

    PubMed  CAS  Google Scholar 

  121. Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384:560–564

    PubMed  CAS  Google Scholar 

  122. Tröltzsch M, Denekas T, Messlinger K (2007) The calcitonin gene-related peptide (CGRP) receptor antagonist BIBN4096BS reduces neurogenic increases in dural blood flow. Eur J Pharmacol 562:103–110

    PubMed  Google Scholar 

  123. Uta D, Furue H, Pickering AE, Rashid MH, Mizuguchi-Takase H, Katafuchi T, Imoto K, Yoshimura M (2010) TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord. Eur J Neurosci 31:1960–1973

    PubMed  Google Scholar 

  124. Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534(Pt 3):813–825

    PubMed  CAS  Google Scholar 

  125. von Düring M, Bauersachs M, Böhmer B, Veh RW, Andres KH (1990) Neuropeptide Y- and substance P-like immunoreactive nerve fibers in the rat dura mater encephali. Anat Embryol (Berl) 182:363–373

    Google Scholar 

  126. Wang L, Cvetkov TL, Chance MR, Moiseenkova-Bell VY (2012) Identification of in vivo disulfide conformation of TRPA1 ion channel. J Biol Chem 287:6169–6176

    PubMed  CAS  Google Scholar 

  127. Williamson DJ, Hargreaves RJ (2001) Neurogenic inflammation in the context of migraine. Microsc Res Tech 53:167–178

    PubMed  CAS  Google Scholar 

  128. Zhang XC, Levy D (2008) Modulation of meningeal nociceptors mechanosensitivity by peripheral proteinase-activated receptor-2: the role of mast cells. Cephalalgia 28:276–284

    PubMed  Google Scholar 

  129. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R (2010) Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci 30:8807–8814

    PubMed  CAS  Google Scholar 

  130. Zhang H, Wickley PJ, Sinha S, Bratz IN, Damron DS (2011) Propofol restores transient receptor potential vanilloid receptor subtype-1 sensitivity via activation of transient receptor potential ankyrin receptor subtype-1 in sensory neurons. Anesthesiology 114:1169–1179

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ildikó Hajdú for help with preparing the artwork. This work was supported by grants from the Hungarian Scientific Research Fund (OTKA K-101873) and the National Developmental Agency of Hungary (TAMOP 4.2.2/B-10/1-2010-0012 and 4.2.1/B-09/1/KONV-2010-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Dux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dux, M., Sántha, P. & Jancsó, G. The role of chemosensitive afferent nerves and TRP ion channels in the pathomechanism of headaches. Pflugers Arch - Eur J Physiol 464, 239–248 (2012). https://doi.org/10.1007/s00424-012-1142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1142-7

Keywords

Navigation