Skip to main content
Log in

Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mitochondria from every tissue are quite similar in their capability to accumulate Ca2+ in a process that depends on the electrical potential across the inner membrane; it is catalyzed by a gated channel (named mitochondrial Ca2+ uniporter), the molecular identity of which has only recently been unraveled. The release of accumulated Ca2+ in mitochondria from different tissues is, on the contrary, quite variable, both in terms of speed and mechanism: a Na+-dependent efflux in excitable cells (catalyzed by NCLX) and a H+/Ca2+ exchanger in other cells. The efficacy of mitochondrial Ca2+ uptake in living cells is strictly dependent on the topological arrangement of the organelles with respect to the source of Ca2+ flowing into the cytoplasm, i.e., plasma membrane or intracellular channels. In turn, the structural and functional relationships between mitochondria and other cellular membranes are dictated by the specific architecture of different cells. Mitochondria not only modulate the amplitude and the kinetics of local and bulk cytoplasmic Ca2+ changes but also depend on the Ca2+ signal for their own functionality, in particular for their capacity to produce ATP. In this review, we summarize the processes involved in mitochondrial Ca2+ handling and its integration in cell physiology, highlighting the main common characteristics as well as key differences, in different tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acin-Perez R, Russwurm M, Gunnewig K, Gertz M, Zoidl G, Ramos L, Buck J, Levin LR, Rassow J, Manfredi G, Steegborn C (2011) A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem 286:30423–30432

    Article  PubMed  CAS  Google Scholar 

  2. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–276

    Article  PubMed  CAS  Google Scholar 

  3. Area-Gomez E, de Groof AJ, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175:1810–1816

    Article  PubMed  CAS  Google Scholar 

  4. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  PubMed  CAS  Google Scholar 

  5. Behbahani H, Shabalina IG, Wiehager B, Concha H, Hultenby K, Petrovic N, Nedergaard J, Winblad B, Cowburn RF, Ankarcrona M (2006) Differential role of presenilin-1 and -2 on mitochondrial membrane potential and oxygen consumption in mouse embryonic fibroblasts. J Neurosci Res 84:891–902

    Article  PubMed  CAS  Google Scholar 

  6. Bell CJ, Bright NA, Rutter GA, Griffiths EJ (2006) ATP regulation in adult rat cardiomyocytes: time-resolved decoding of rapid mitochondrial calcium spiking imaged with targeted photoproteins. J Biol Chem 281:28058–28067

    Article  PubMed  CAS  Google Scholar 

  7. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    PubMed  CAS  Google Scholar 

  8. Bernardi P, Azzone GF (1983) Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Eur J Biochem 134:377–383

    Article  PubMed  CAS  Google Scholar 

  9. Beutner G, Sharma VK, Giovannucci R, Yule DI, Sheu S-S (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276:21482–21488

    Article  PubMed  CAS  Google Scholar 

  10. Bragadin M, Pozzan T, Azzone GF (1979) Activation energies and enthalpies during Ca2+ transport in rat liver mitochondria. FEBS Lett 104:347–351

    Article  PubMed  CAS  Google Scholar 

  11. Bragadin M, Pozzan T, Azzone GF (1983) The nature of the electron spin resonance signal during aerobic uptake of Mn2+ in mitochondria from rat liver. FEBS J 134:385–390

    Article  CAS  Google Scholar 

  12. Brini M, Pinton P, King MP, Davidson M, Schon EA, Rizzuto R (1999) A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat Med 5:951–954

    Article  PubMed  CAS  Google Scholar 

  13. Brookes PS, Parker N, Buckingham JA, Vidal-Puig A, Halestrap AP, Gunter TE, Nicholls DG, Bernardi P, Lemasters JJ, Brand MD (2008) UCPs—unlikely calcium porters. Nat Cell Biol 10:1235–1237, author reply 1237–1240

    Article  PubMed  CAS  Google Scholar 

  14. Budd SL, Nicholls DG (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 67:2282–2291

    Article  PubMed  CAS  Google Scholar 

  15. Cai X, Lytton J (2004) Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6. J Biol Chem 279:5867–5876

    Article  PubMed  CAS  Google Scholar 

  16. Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A (2006) Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med 203:2879–2886

    Article  PubMed  CAS  Google Scholar 

  17. Campello S, Scorrano L (2010) Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 11:678–684

    Article  PubMed  CAS  Google Scholar 

  18. Carafoli E, Balcavage WX, Lehninger AL, Mattoon JR (1970) Ca2+ metabolism in yeast cells and mitochondria. Biochim Biophys Acta 205:18–26

    Article  PubMed  CAS  Google Scholar 

  19. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283

    Article  PubMed  CAS  Google Scholar 

  20. Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu Rev Biochem 80:973–1000

    Article  PubMed  CAS  Google Scholar 

  21. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134

    PubMed  CAS  Google Scholar 

  22. Colegrove SL, Albrecht MA, Friel DD (2000) Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+]i elevations in sympathetic neurons. J Gen Physiol 115:351–370

    Article  PubMed  CAS  Google Scholar 

  23. Contento RL, Campello S, Trovato AE, Magrini E, Anselmi F, Viola A (2010) Adhesion shapes T cells for prompt and sustained T-cell receptor signalling. EMBO J 29:4035–4047

    Article  PubMed  CAS  Google Scholar 

  24. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797:607–618

    Article  PubMed  CAS  Google Scholar 

  25. Contreras L, Gomez-Puertas P, Iijima M, Kobayashi K, Saheki T, Satrustegui J (2007) Ca2+ activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle. J Biol Chem 282:7098–7106

    Article  PubMed  CAS  Google Scholar 

  26. Crompton M, Moser R, Ludi H, Carafoli E (1978) The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem 82:25–31

    Article  PubMed  CAS  Google Scholar 

  27. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    Article  PubMed  CAS  Google Scholar 

  28. Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER–mitochondrial interface. Mol Cell 39:121–132

    Article  PubMed  CAS  Google Scholar 

  29. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  CAS  Google Scholar 

  30. De Marchi U, Castelbou C, Demaurex N (2011) Uncoupling protein 3 (UCP3) modulates the activity of sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) by decreasing mitochondrial ATP production. J Biol Chem 286:32533–32541

    Article  PubMed  CAS  Google Scholar 

  31. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  CAS  Google Scholar 

  32. Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB (2011) The IP3 receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 1813:1003–1013

    Article  PubMed  CAS  Google Scholar 

  33. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316

    Article  PubMed  CAS  Google Scholar 

  34. Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128:161–163

    PubMed  CAS  Google Scholar 

  35. Dimmer KS, Navoni F, Casarin A, Trevisson E, Endele S, Winterpacht A, Salviati L, Scorrano L (2008) LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Hum Mol Genet 17:201–214

    Article  PubMed  CAS  Google Scholar 

  36. Dimmer KS, Scorrano L (2006) (De)constructing mitochondria: what for? Physiology (Bethesda) 21:233–241

    Article  CAS  Google Scholar 

  37. Drago I, Pizzo P, Pozzan T (2011) After half a century mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J 30:4119–4125

    Article  PubMed  CAS  Google Scholar 

  38. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529(Pt 1):57–68

    Article  PubMed  CAS  Google Scholar 

  39. Eisenberg BR (1983) Quantitative ultrastructure of mammalian skeletal muscle, Handbook of physiology. Skeletal muscle. Wiley, Bethesda, pp 73–112, Published for the American Physiological Society

    Google Scholar 

  40. Franzini-Armstrong C (2007) ER–mitochondria communication. How privileged? Physiology (Bethesda) 22:261–268

    Article  CAS  Google Scholar 

  41. Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N (2004) Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 279:22704–22714

    Article  PubMed  CAS  Google Scholar 

  42. Gherghiceanu M, Popescu LM (2006) Caveolar nanospaces in smooth muscle cells. J Cell Mol Med 10:519–528

    Article  PubMed  Google Scholar 

  43. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290

    Article  PubMed  CAS  Google Scholar 

  44. Giacomello M, Drago I, Pizzo P, Pozzan T (2007) Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ 14:1267–1274

    Article  PubMed  CAS  Google Scholar 

  45. Gillis JM (1997) Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles. J Muscle Res Cell Motil 18:473–483

    Article  PubMed  CAS  Google Scholar 

  46. Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51:2959–2973

    Article  PubMed  CAS  Google Scholar 

  47. Griffiths EJ (2009) Mitochondrial calcium transport in the heart: physiological and pathological roles. J Mol Cell Cardiol 46:789–803

    Article  PubMed  CAS  Google Scholar 

  48. Grimm S (2012) The ER–mitochondria interface: the social network of cell death. Biochim Biophys Acta 1823:327–334

    Article  PubMed  CAS  Google Scholar 

  49. Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560

    Article  PubMed  CAS  Google Scholar 

  50. Hajnóczky G, Hager R, Thomas AP (1999) Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca2+. J Biol Chem 274:14157–14162

    Article  PubMed  Google Scholar 

  51. Hansford RG, Zorov D (1998) Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem 184:359–369

    Article  PubMed  CAS  Google Scholar 

  52. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER–mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  PubMed  CAS  Google Scholar 

  53. Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648

    Article  PubMed  CAS  Google Scholar 

  54. Hubbard MJ, McHugh NJ (1996) Mitochondrial ATP synthase F1-beta-subunit is a calcium-binding protein. FEBS Lett 391:323–329

    Article  PubMed  CAS  Google Scholar 

  55. Ishii K, Hirose K, Iino M (2006) Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep 7:390–396

    Article  PubMed  CAS  Google Scholar 

  56. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H + antiporter. Science 326:144–147

    Article  PubMed  CAS  Google Scholar 

  57. Jung DW, Baysal K, Brierley GP (1995) The sodium-calcium antiport of heart mitochondria is not electroneutral. J Biol Chem 270:672–678

    Article  PubMed  CAS  Google Scholar 

  58. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  PubMed  CAS  Google Scholar 

  59. Landolfi B, Curci S, Debellis L, Pozzan T, Hofer AM (1998) Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured in situ in intact cells. J Cell Biol 142:1235–1243

    Article  PubMed  CAS  Google Scholar 

  60. le Thu T, Ahn JR, Woo SH (2006) Inhibition of L-type Ca2+ channel by mitochondrial Na + -Ca2+ exchange inhibitor CGP-37157 in rat atrial myocytes. Eur J Pharmacol 552:15–19

    Article  CAS  Google Scholar 

  61. Li W, Shariat-Madar Z, Powers M, Sun X, Lane RD, Garlid KD (1992) Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heart mitochondria. J Biol Chem 267:17983–17989

    PubMed  CAS  Google Scholar 

  62. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    Article  PubMed  CAS  Google Scholar 

  63. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O'Rourke B (2006) Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res 99:172–182

    Article  PubMed  CAS  Google Scholar 

  64. Matlib MA, Schwartz A (1983) Selective effects of diltiazem, a benzothiazepine calcium channel blocker, and diazepam, and other benzodiazepines on the Na+/Ca2+ exchange carrier system of heart and brain mitochondria. Life Sci 32:2837–2842

    Article  PubMed  CAS  Google Scholar 

  65. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J Biol Chem 273:10223–10231

    Article  PubMed  CAS  Google Scholar 

  66. McCormack JG, Denton RM (1981) The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other inotropic agents. Biochem J 194:639–643

    PubMed  CAS  Google Scholar 

  67. McCormack JG, Denton RM (1984) Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+. Biochem J 218:235–247

    PubMed  CAS  Google Scholar 

  68. McCormack JG, England PJ (1983) Ruthenium Red inhibits the activation of pyruvate dehydrogenase caused by positive inotropic agents in the perfused rat heart. Biochem J 214:581–585

    PubMed  CAS  Google Scholar 

  69. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  70. Mendes CC, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, Rodrigues MA, Gomez MV, Nathanson MH, Leite MF (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280:40892–40900

    Article  PubMed  CAS  Google Scholar 

  71. Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, Wahlers T, Hoppe UC (2009) Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119:2435–2443

    Article  PubMed  CAS  Google Scholar 

  72. Mikoshiba K (2007) The IP3 receptor/Ca2+ channel and its cellular function. Biochem Soc Symp 74:9–22

    Article  PubMed  CAS  Google Scholar 

  73. Montero M, Alonso MT, Albillos A, Cuchillo-Ibanez I, Olivares R, Garcia A, Garcia-Sancho J, Alvarez J (2001) Control of secretion by mitochondria depends on the size of the local [Ca2+] after chromaffin cell stimulation. Eur J Neurosci 13:2247–2254

    Article  PubMed  CAS  Google Scholar 

  74. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibáñez I, Albillos A, Garcia AG, García-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61

    Article  PubMed  CAS  Google Scholar 

  75. Neumann JT, Diaz-Sylvester PL, Fleischer S, Copello JA (2011) CGP-37157 inhibits the sarcoplasmic reticulum Ca(2) + ATPase and activates ryanodine receptor channels in striated muscle. Mol Pharmacol 79:141–147

    Article  PubMed  CAS  Google Scholar 

  76. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317

    Article  PubMed  CAS  Google Scholar 

  77. Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G, Schweyen RJ (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279:30307–30315

    Article  PubMed  CAS  Google Scholar 

  78. Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P (2012) Perspectives on: SGP Symposium on Mitochondrial Physiology and Medicine: The pathophysiology of LETM1. J Gen Physiol 139(6):445–454

    Article  PubMed  Google Scholar 

  79. Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H + exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656

    Article  PubMed  CAS  Google Scholar 

  80. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  81. Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, Silverman WF, Argaman M, Sekler I (2004) Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J Biol Chem 279:25234–25240

    Article  PubMed  CAS  Google Scholar 

  82. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 107:436–441

    Article  PubMed  CAS  Google Scholar 

  83. Panfili E, Sandri G, Sottocasa GL, Lunazzi G, Liut G, Graziosi G (1976) Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+-binding glycoprotein. Nature 264:185–186

    Article  PubMed  CAS  Google Scholar 

  84. Paucek P, Jaburek M (2004) Kinetics and ion specificity of Na+/Ca2+ exchange mediated by the reconstituted beef heart mitochondrial Na+/Ca2+ antiporter. Biochim Biophys Acta 1659:83–91

    Article  PubMed  CAS  Google Scholar 

  85. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467:291–296

    Article  PubMed  CAS  Google Scholar 

  86. Petersen OH (2012) Specific mitochondrial functions in separate sub-cellular domains of pancreatic acinar cells. Pflugers Arch. doi:10.1007/s00424-012-1099-6

  87. Petersen OH, Sutton R (2006) Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends Pharmacol Sci 27:113–120

    Article  PubMed  CAS  Google Scholar 

  88. Petersen OH, Sutton R, Criddle DN (2006) Failure of calcium microdomain generation and pathological consequences. Cell Calcium 40:593–600

    Article  PubMed  CAS  Google Scholar 

  89. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418

    Article  PubMed  CAS  Google Scholar 

  90. Pivovarova NB, Hongpaisan J, Andrews SB, Friel DD (1999) Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J Neurosci 19:6372–6384

    PubMed  CAS  Google Scholar 

  91. Pizzo P, Pozzan T (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17:511–517

    Article  PubMed  CAS  Google Scholar 

  92. Pozzan T, Azzone GF (1976) The coupling of electrical ion fluxes in rat liver mitochondria. FEBS Lett 72:62–66

    Article  PubMed  CAS  Google Scholar 

  93. Pozzan T, Bragadin M, Azzone GF (1977) Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry 16:5618–5625

    Article  PubMed  CAS  Google Scholar 

  94. Quintana A, Schwindling C, Wenning AS, Becherer U, Rettig J, Schwarz EC, Hoth M (2007) T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci USA 104:14418–14423

    Article  PubMed  CAS  Google Scholar 

  95. Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159:613–624

    Article  PubMed  CAS  Google Scholar 

  96. Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004:re1

    Article  PubMed  Google Scholar 

  97. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  PubMed  CAS  Google Scholar 

  98. Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhães PJ, Di Virgilio F, Pozzan T (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22:8619–8627

    Article  PubMed  CAS  Google Scholar 

  99. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  PubMed  CAS  Google Scholar 

  100. Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T (2001) Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J 20:4998–5007

    Article  PubMed  CAS  Google Scholar 

  101. Rudolf R, Mongillo M, Magalhães PJ, Pozzan T (2004) In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536

    Article  PubMed  CAS  Google Scholar 

  102. Rutter GA, Denton RM (1988) Regulation of NAD + -linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD + ratios. Biochem J 252:181–189

    PubMed  CAS  Google Scholar 

  103. Saris NE, Sirota TV, Virtanen I, Niva K, Penttila T, Dolgachova LP, Mironova GD (1993) Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycoproteinT. J Bioenerg Biomembr 25:307–312

    Article  PubMed  CAS  Google Scholar 

  104. Schlickum S, Moghekar A, Simpson JC, Steglich C, O'Brien RJ, Winterpacht A, Endele SU (2004) LETM1, a gene deleted in Wolf-Hirschhorn syndrome, encodes an evolutionarily conserved mitochondrial protein. Genomics 83:254–261

    Article  PubMed  CAS  Google Scholar 

  105. Scorrano L (2007) Multiple functions of mitochondria-shaping proteins. Novartis Found Symp 287:47–55, discussion 55–49

    Article  PubMed  CAS  Google Scholar 

  106. Sottocasa G, Sandri G, Panfili E, De Bernard B, Gazzotti P, Vasington FD, Carafoli E (1972) Isolation of a soluble Ca2+ binding glycoprotein from ox liver mitochondria. Biochem Biophys Res Commun 47:808–813

    Article  PubMed  CAS  Google Scholar 

  107. Subramanian S, Viatchenko-Karpinski S, Lukyanenko V, Gyorke S, Wiesner TF (2001) Underlying mechanisms of symmetric calcium wave propagation in rat ventricular myocytes. Biophys J 80:1–11

    Article  PubMed  CAS  Google Scholar 

  108. Szabadkai G, Simoni AM, Bianchi K, De Stefani D, Leo S, Wieckowski MR, Rizzuto R (2006) Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763:442–449

    Article  PubMed  CAS  Google Scholar 

  109. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16:59–68

    Article  PubMed  CAS  Google Scholar 

  110. Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J 18:4999–5008

    Article  PubMed  CAS  Google Scholar 

  111. Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF (2007) Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol 9:445–452

    Article  PubMed  CAS  Google Scholar 

  112. Unitt JF, McCormack JG, Reid D, MacLachlan LK, England PJ (1989) Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorilation in the stimulated rat heart. Biochem J 262:293–301

    PubMed  CAS  Google Scholar 

  113. Villa A, Garcia-Simon MI, Blanco P, Sese B, Bogonez E, Satrustegui J (1998) Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity. Biochim Biophys Acta 1373:347–359

    Article  PubMed  CAS  Google Scholar 

  114. von Stockum S, Basso E, Petronilli V, Sabatelli P, Forte MA, Bernardi P (2011) Properties of Ca2+ transport in mitochondria of Drosophila melanogaster. J Biol Chem 286:41163–41170

    Article  CAS  Google Scholar 

  115. Waldeck-Weiermair M, Malli R, Naghdi S, Trenker M, Kahn MJ, Graier WF (2010) The contribution of UCP2 and UCP3 to mitochondrial Ca(2+) uptake is differentially determined by the source of supplied Ca(2+). Cell Calcium 47:433–440

    Article  PubMed  CAS  Google Scholar 

  116. Wiederkehr A, Szanda G, Akhmedov D, Mataki C, Heizmann CW, Schoonjans K, Pozzan T, Spat A, Wollheim CB (2011) Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 13:601–611

    Article  PubMed  CAS  Google Scholar 

  117. Yamada EW, Huzel NJ (1985) Ca2+-binding properties of a unique ATPase inhibitor protein isolated from mitochondria of bovine heart and rat skeletal muscle. Cell Calcium 6:469–479

    Article  PubMed  CAS  Google Scholar 

  118. Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P (2011) Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc Natl Acad Sci USA 108:2777–2782

    Article  PubMed  CAS  Google Scholar 

  119. Zampese E, Fasolato C, Pozzan T, Pizzo P (2011) Presenilin-2 modulation of ER–mitochondria interactions. Comm Integr Biol 4:357–360

    Article  CAS  Google Scholar 

  120. Zimmermann B (2000) Control of InsP3-induced Ca2+ oscillations in permeabilized blowfly salivary gland cells: contribution of mitochondria. J Physiol 525(Pt 3):707–719

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The original data by the authors have been supported by grants from the Italian National Research Council (CNR), the MIUR projects PRIN and FIRB, the Italian Institute of Technology (IIT), the Veneto Region and the University of Padua to TP and PP. We are grateful to Dr. P. Magalhaes for critically revising the manuscript and to Dr. D. De Stefani for unpublished information on MCU physiology and structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Pozzan.

Additional information

This article is published as part of the special issue on “Cell-specific roles of mitochondrial Ca2+ handling.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizzo, P., Drago, I., Filadi, R. et al. Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch - Eur J Physiol 464, 3–17 (2012). https://doi.org/10.1007/s00424-012-1122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1122-y

Keywords

Navigation