Skip to main content
Log in

Mitochondrial regulation of cytosolic Ca2+ signals in smooth muscle

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The cytosolic Ca2+ concentration ([Ca2+]c) controls virtually every activity of smooth muscle, including contraction, migration, transcription, division and apoptosis. These processes may be activated by large (>10 μM) amplitude [Ca2+]c increases, which occur in small restricted regions of the cell or by smaller (<1 μM) amplitude changes throughout the bulk cytoplasm. Mitochondria contribute to the regulation of these signals by taking up Ca2+. However, mitochondria’s reported low affinity for Ca2+ is thought to require the organelle to be positioned close to ion channels and within a microdomain of high [Ca2+]. In cultured smooth muscle, mitochondria are highly dynamic structures but in native smooth muscle mitochondria are immobile, apparently strategically positioned organelles that regulate the upstroke and amplitude of IP3-evoked Ca2+ signals and IP3 receptor (IP3R) cluster activity. These observations suggest mitochondria are positioned within the high [Ca2+] microdomain arising from an IP3R cluster to exert significant local control of channel activity. On the other hand, neither the upstroke nor amplitude of voltage-dependent Ca2+ entry is modulated by mitochondria; rather, it is the declining phase of the transient that is regulated by the organelle. Control of the declining phase of the transient requires a high mitochondrial affinity for Ca2+ to enable uptake to occur over the normal physiological Ca2+ range (<1 μM). Thus, in smooth muscle, mitochondria regulate Ca2+ signals exerting effects over a large range of [Ca2+] (∼200 nM to at least tens of micromolar) to provide a wide dynamic range in the control of Ca2+ signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bai Y, Sanderson MJ (2006) Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP3 receptor. Respir Res 7:34

    Article  PubMed  Google Scholar 

  2. Bai Y, Edelmann M, Sanderson MJ (2009) The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca2+ signaling of airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 297:L347–L361

    Article  PubMed  CAS  Google Scholar 

  3. Balemba OB, Heppner TJ, Bonev AD, Nelson MT, Mawe GM (2006) Calcium waves in intact guinea pig gallbladder smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 291:G717–G727

    Article  PubMed  CAS  Google Scholar 

  4. Balemba OB, Bartoo AC, Nelson MT, Mawe GM (2008) Role of mitochondria in spontaneous rhythmic activity and intracellular calcium waves in the guinea pig gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol 294:G467–G476

    Article  PubMed  CAS  Google Scholar 

  5. Beraud N, Pelloux S, Usson Y, Kuznetsov AV, Ronot X, Tourneur Y, Saks V (2009) Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells. J Bioenerg Biomembr 41:195–214

    Article  PubMed  CAS  Google Scholar 

  6. Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219

    Article  PubMed  CAS  Google Scholar 

  7. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  8. Boittin FX, Macrez N, Halet G, Mironneau J (1999) Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes. Am J Physiol 277:C139–C151

    PubMed  CAS  Google Scholar 

  9. Boncompagni S, Rossi AE, Micaroni M, Beznoussenko GV, Polishchuk RS, Dirksen RT, Protasi F (2009) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20:1058–1067

    Article  PubMed  CAS  Google Scholar 

  10. Bootman MD, Berridge MJ (1995) The elemental principles of calcium signaling. Cell 83:675–678

    Article  PubMed  CAS  Google Scholar 

  11. Boraso A, Williams AJ (1994) Modification of the gating of the cardiac sarcoplasmic reticulum Ca2+-release channel by H2O2 and dithiothreitol. Am J Physiol 267:H1010–H1016

    PubMed  CAS  Google Scholar 

  12. Bortolozzi M, Lelli A, Mammano F (2008) Calcium microdomains at presynaptic active zones of vertebrate hair cells unmasked by stochastic deconvolution. Cell Calcium 44:158–168

    Article  PubMed  CAS  Google Scholar 

  13. Bradley KN, Flynn ER, Muir TC, McCarron JG (2002) Ca2+ regulation in guinea-pig colonic smooth muscle: the role of the Na+–Ca2+ exchanger and the sarcoplasmic reticulum. J Physiol 538:465–482

    Article  PubMed  CAS  Google Scholar 

  14. Bradley KN, Craig JW, Muir TC, McCarron JG (2004) The sarcoplasmic reticulum and sarcolemma together form a passive Ca2+ trap in colonic smooth muscle. Cell Calcium 36:29–41

    Article  PubMed  CAS  Google Scholar 

  15. Brdiczka D (1991) Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta 1071:291–312

    PubMed  CAS  Google Scholar 

  16. Carafoli E, Rossi CS, Lehninger AL (1965) Uptake of adenine nucleotides by respiring mitochondria during active accumulation of Ca++ and phosphate. J Biol Chem 240:2254–2261

    PubMed  CAS  Google Scholar 

  17. Chalmers S, McCarron JG (2008) The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle. J Cell Sci 121:75–85

    Article  PubMed  CAS  Google Scholar 

  18. Chalmers S, McCarron JG (2009) Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors. Cell Calcium 46:107–113

    Article  PubMed  CAS  Google Scholar 

  19. Chalmers S, Olson ML, MacMillan D, Rainbow RD, McCarron JG (2007) Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium 42:447–466

    Article  PubMed  CAS  Google Scholar 

  20. Chalmers S, Caldwell ST, Quin C, Prime TA, James AM, Cairns AG, Murphy MP, McCarron JG, Hartley RC (2012) Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. J Am Chem Soc 134:758–761

    Article  PubMed  CAS  Google Scholar 

  21. Cheranov SY, Jaggar JH (2004) Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol 556:755–771

    Article  PubMed  CAS  Google Scholar 

  22. Correa RM, Lafayette SS, Pereira GJ, Hirata H, Garcez-do-Carmo L, Smaili SS (2011) Mitochondrial involvement in carbachol-induced intracellular Ca2+ mobilization and contraction in rat gastric smooth muscle. Life Sci 89:757–764

    Google Scholar 

  23. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    Article  PubMed  CAS  Google Scholar 

  24. Dai J, Kuo KH, Leo JM, van Breemen C, Lee CH (2005) Rearrangement of the close contact between the mitochondria and the sarcoplasmic reticulum in airway smooth muscle. Cell Calcium 37:333–340

    Article  PubMed  CAS  Google Scholar 

  25. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  Google Scholar 

  26. Deluca HF, Engstrom GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci U S A 47:1744–1750

    Article  PubMed  CAS  Google Scholar 

  27. Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol 52:690–718

    Article  PubMed  CAS  Google Scholar 

  28. Drummond RM, Fay FS (1996) Mitochondria contribute to Ca2+ removal in smooth muscle cells. Pflugers Arch 431:473–482

    Article  PubMed  CAS  Google Scholar 

  29. Drummond RM, Tuft RA (1999) Release of Ca2+ from the sarcoplasmic reticulum increases mitochondrial [Ca2+] in rat pulmonary artery smooth muscle cells. J Physiol 516(Pt 1):139–147

    Article  PubMed  CAS  Google Scholar 

  30. Drummond RM, Mix TC, Tuft RA, Walsh JV Jr, Fay FS (2000) Mitochondrial Ca2+ homeostasis during Ca2+ influx and Ca2+ release in gastric myocytes from Bufo marinus. J Physiol 522:375–390

    Article  PubMed  CAS  Google Scholar 

  31. Garcia-Perez C, Schneider TG, Hajnoczky G, Csordas G (2011) Alignment of sarcoplasmic reticulum-mitochondrial junctions with mitochondrial contact points. Am J Physiol Heart Circ Physiol 301:H1907–H1915

    Google Scholar 

  32. Gordienko DV, Harhun MI, Kustov MV, Pucovsky V, Bolton TB (2008) Sub-plasmalemmal [Ca2+]i upstroke in myocytes of the guinea-pig small intestine evoked by muscarinic stimulation: IP3R-mediated Ca2+ release induced by voltage-gated Ca2+ entry. Cell Calcium 43:122–141

    Article  PubMed  CAS  Google Scholar 

  33. Greenwood IA, Helliwell RM, Large WA (1997) Modulation of Ca2+-activated Cl currents in rabbit portal vein smooth muscle by an inhibitor of mitochondrial Ca2+ uptake. J Physiol 505:53–64

    Article  PubMed  CAS  Google Scholar 

  34. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–610

    Article  PubMed  CAS  Google Scholar 

  35. Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153

    Article  PubMed  CAS  Google Scholar 

  36. Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122

    Article  PubMed  CAS  Google Scholar 

  37. Iino M, Tsukioka M (1994) Feedback control of inositol trisphosphate signalling by calcium. Mol Cell Endocrinol 98:141–146

    Article  PubMed  CAS  Google Scholar 

  38. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in astrocytes–requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 115:1175–1188

    PubMed  CAS  Google Scholar 

  39. Jaggar JH, Nelson MT (2000) Differential regulation of Ca2+ sparks and Ca2+ waves by UTP in rat cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 279:C1528–C1539

    PubMed  CAS  Google Scholar 

  40. Kamishima T, McCarron JG (1996) Depolarization-evoked increases in cytosolic calcium concentration in isolated smooth muscle cells of rat portal vein. J Physiol 492:61–74

    PubMed  CAS  Google Scholar 

  41. Kamishima T, McCarron JG (1998) Ca2+ removal mechanisms in rat cerebral resistance size arteries. Biophys J 75:1767–1773

    Article  PubMed  CAS  Google Scholar 

  42. Kamishima T, Quayle JM (2002) Mitochondrial Ca2+ uptake is important over low [Ca2+]i range in arterial smooth muscle. Am J Physiol Heart Circ Physiol 283:H2431–H2439

    PubMed  CAS  Google Scholar 

  43. Kamishima T, Davies NW, Standen NB (2000) Mechanisms that regulate [Ca2+]i following depolarization in rat systemic arterial smooth muscle cells. J Physiol 522:285–295

    Article  PubMed  CAS  Google Scholar 

  44. Karaki H, Weiss GB (1981) Inhibitors of mitochondrial Ca++ uptake dissociate potassium-induced tension responses from increased 45Ca retention in rabbit aortic smooth muscle. Blood Vessels 18:28–35

    PubMed  CAS  Google Scholar 

  45. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  PubMed  CAS  Google Scholar 

  46. Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24

    PubMed  CAS  Google Scholar 

  47. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845

    Article  PubMed  CAS  Google Scholar 

  48. Marchant JS, Parker I (2001) Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations. EMBO J 20:65–76

    Article  PubMed  CAS  Google Scholar 

  49. McCarron JG, Muir TC (1999) Mitochondrial regulation of the cytosolic Ca2+ concentration and the InsP3-sensitive Ca2+ store in guinea-pig colonic smooth muscle. J Physiol 516:149–161

    Article  PubMed  CAS  Google Scholar 

  50. McCarron JG, MacMillan D, Bradley KN, Chalmers S, Muir TC (2004) Origin and mechanisms of Ca2+ waves in smooth muscle as revealed by localized photolysis of caged inositol 1,4,5-trisphosphate. J Biol Chem 279:8417–8427

    Article  PubMed  CAS  Google Scholar 

  51. McCarron JG, Chalmers S, Bradley KN, Macmillan D, Muir TC (2006) Ca2+ microdomains in smooth muscle. Cell Calcium 40:461–493

    Article  PubMed  CAS  Google Scholar 

  52. McCarron JG, Olson ML, Currie S, Wright AJ, Anderson KI, Girkin JM (2009) Elevations of intracellular calcium reflect normal voltage-dependent behavior, and not constitutive activity, of voltage-dependent calcium channels in gastrointestinal and vascular smooth muscle. J Gen Physiol 133:439–457

    Article  PubMed  CAS  Google Scholar 

  53. McCarron JG, Chalmers S, MacMillan D, Olson ML (2010) Agonist-evoked Ca2+ wave progression requires Ca2+ and IP3. J Cell Physiol 244:334–344

    Article  Google Scholar 

  54. McGeown JG, Drummond RM, McCarron JG, Fay FS (1996) The temporal profile of calcium transients in voltage clamped gastric myocytes from Bufo marinus. J Physiol 497(Pt 2):321–336

    PubMed  CAS  Google Scholar 

  55. Monteith GR, Blaustein MP (1999) Heterogeneity of mitochondrial matrix free Ca2+: resolution of Ca2+ dynamics in individual mitochondria in situ. Am J Physiol 276:C1193–C1204

    PubMed  CAS  Google Scholar 

  56. Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 17:6961–6973

    PubMed  CAS  Google Scholar 

  57. Narayanan D, Xi Q, Pfeffer LM, Jaggar JH (2010) Mitochondria control functional CaV1.2 expression in smooth muscle cells of cerebral arteries. Circ Res 107:631–641

    Article  PubMed  CAS  Google Scholar 

  58. Nassar A, Simpson AW (2000) Elevation of mitochondrial calcium by ryanodine-sensitive calcium-induced calcium release. J Biol Chem 275:23661–23665

    Article  PubMed  CAS  Google Scholar 

  59. Navedo MF, Amberg GC, Votaw VS, Santana LF (2005) Constitutively active L-type Ca2+ channels. Proc Natl Acad Sci U S A 102:11112–11117

    Article  PubMed  CAS  Google Scholar 

  60. Navedo MF, Amberg GC, Nieves M, Molkentin JD, Santana LF (2006) Mechanisms underlying heterogeneous Ca2+ sparklet activity in arterial smooth muscle. J Gen Physiol 127:611–622

    Article  PubMed  CAS  Google Scholar 

  61. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    Article  PubMed  CAS  Google Scholar 

  62. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749

    Article  PubMed  CAS  Google Scholar 

  63. Nicholls DG, Chalmers S (2004) The integration of mitochondrial calcium transport and storage. J Bioenerg Biomembr 36:277–281

    Article  PubMed  CAS  Google Scholar 

  64. Nixon GF, Mignery GA, Somlyo AV (1994) Immunogold localization of inositol 1,4,5-trisphosphate receptors and characterization of ultrastructural features of the sarcoplasmic reticulum in phasic and tonic smooth muscle. J Muscle Res Cell Motil 15:682–700

    Article  PubMed  CAS  Google Scholar 

  65. O’Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV Jr (2004) Spontaneous mitochondrial depolarizations are independent of SR Ca2+ release. Am J Physiol Cell Physiol 286:C1139–C1151

    Article  PubMed  Google Scholar 

  66. Oancea E, Meyer T (1996) Reversible desensitization of inositol trisphosphate-induced calcium release provides a mechanism for repetitive calcium spikes. J Biol Chem 271:17253–17260

    Article  PubMed  CAS  Google Scholar 

  67. Olson ML, Chalmers S, McCarron JG (2010) Mitochondrial Ca2+ uptake increases Ca2+ release from inositol 1,4,5-trisphosphate receptor clusters in smooth muscle cells. J Biol Chem 285:2040–2050

    Article  PubMed  CAS  Google Scholar 

  68. Olson ML, Chalmers S, McCarron JG (2012) Mitochondrial organization and Ca2+ uptake. Biochem Soc Trans 40:158–167

    Article  PubMed  CAS  Google Scholar 

  69. Parker I, Yao Y (1996) Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol 491(Pt 3):663–668

    PubMed  CAS  Google Scholar 

  70. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Article  PubMed  CAS  Google Scholar 

  71. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  PubMed  CAS  Google Scholar 

  72. Rossi CS, Lehninger AL (1964) Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J Biol Chem 239:3971–3980

    PubMed  CAS  Google Scholar 

  73. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729

    Article  PubMed  CAS  Google Scholar 

  74. Smith JS, Coronado R, Meissner G (1986) Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol 88:573–588

    Article  PubMed  CAS  Google Scholar 

  75. Somlyo AP, Somlyo AV, Shuman H (1979) Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei, and cytoplasm. J Cell Biol 81:316–335

    Article  PubMed  CAS  Google Scholar 

  76. Sward K, Dreja K, Lindqvist A, Persson E, Hellstrand P (2002) Influence of mitochondrial inhibition on global and local [Ca2+]i in rat tail artery. Circ Res 90:792–799

    Article  PubMed  Google Scholar 

  77. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    Article  PubMed  CAS  Google Scholar 

  78. Szado T, Kuo KH, Bernard-Helary K, Poburko D, Lee CH, Seow C, Ruegg UT, van Breemen C (2003) Agonist-induced mitochondrial Ca2+ transients in smooth muscle. FASEB J 17:28–37

    Article  PubMed  CAS  Google Scholar 

  79. Taggart MJ, Wray S (1998) Contribution of sarcoplasmic reticular calcium to smooth muscle contractile activation: gestational dependence in isolated rat uterus. J Physiol 511:133–144

    Article  PubMed  CAS  Google Scholar 

  80. Taggart MJ, Menice CB, Morgan KG, Wray S (1997) Effect of metabolic inhibition on intracellular Ca2+, phosphorylation of myosin regulatory light chain and force in rat smooth muscle. J Physiol 499(Pt 2):485–496

    PubMed  CAS  Google Scholar 

  81. Waring P (2005) Redox active calcium ion channels and cell death. Arch Biochem Biophys 434:33–42

    Article  PubMed  CAS  Google Scholar 

  82. Xi Q, Cheranov SY, Jaggar JH (2005) Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ Res 97:354

    Article  PubMed  CAS  Google Scholar 

  83. ZhuGe R, Tuft RA, Fogarty KE, Bellve K, Fay FS, Walsh JV Jr (1999) The influence of sarcoplasmic reticulum Ca2+ concentration on Ca2+ sparks and spontaneous transient outward currents in single smooth muscle cells. J Gen Physiol 113:215–228

    Article  PubMed  CAS  Google Scholar 

  84. Zhuge R, Fogarty KE, Tuft RA, Walsh JV Jr (2002) Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca2+ concentration on the order of 10 microM during a Ca2+ spark. J Gen Physiol 120:15–27

    Article  PubMed  CAS  Google Scholar 

  85. Zhuge R, Fogarty KE, Baker SP, McCarron JG, Tuft RA, Lifshitz LM, Walsh JV Jr (2004) Ca2+ spark sites in smooth muscle cells are numerous and differ in number of ryanodine receptors, large-conductance K+ channels, and coupling ratio between them. Am J Physiol Cell Physiol 287:C1577–C1588

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Wellcome Trust (092292/Z/10/Z) and British Heart Foundation PG/11/70/29086; their support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. McCarron.

Additional information

This article is published as part of the special issue on “Cell-specific roles of mitochondrial Ca2+ handling.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarron, J.G., Olson, M.L. & Chalmers, S. Mitochondrial regulation of cytosolic Ca2+ signals in smooth muscle. Pflugers Arch - Eur J Physiol 464, 51–62 (2012). https://doi.org/10.1007/s00424-012-1108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1108-9

Keywords

Navigation