Skip to main content
Log in

Interactions between the C-terminus of Kv1.5 and Kvβ regulate pyridine nucleotide-dependent changes in channel gating

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Voltage-gated potassium (Kv) channels are tetrameric assemblies of transmembrane Kv proteins with cytosolic N- and C-termini. The N-terminal domain of Kv1 proteins binds to β-subunits, but the role of the C-terminus is less clear. Therefore, we studied the role of the C-terminus in regulating Kv1.5 channel and its interactions with Kvβ-subunits. When expressed in COS-7 cells, deletion of the C-terminal domain of Kv1.5 did not affect channel gating or kinetics. Coexpression of Kv1.5 with Kvβ3 increased current inactivation, whereas Kvβ2 caused a hyperpolarizing shift in the voltage dependence of current activation. Inclusion of NADPH in the patch pipette solution accelerated the inactivation of Kv1.5-Kvβ3 currents. In contrast, NADP+ decreased the rate and the extent of Kvβ3-induced inactivation and reversed the hyperpolarizing shift in the voltage dependence of activation induced by Kvβ2. Currents generated by Kv1.5ΔC+Kvβ3 or Kv1.5ΔC+Kvβ2 complexes did not respond to changes in intracellular pyridine nucleotide concentration, indicating that the C-terminus is required for pyridine nucleotide-dependent interactions between Kvβ and Kv1.5. A glutathione-S-transferase (GST) fusion protein containing the C-terminal peptide of Kv1.5 did not bind to apoKvβ2, but displayed higher affinity for Kvβ2:NADPH than Kvβ2:NADP+. The GST fusion protein also precipitated Kvβ proteins from mouse brain lysates. Pull-down experiments, structural analysis and electrophysiological data indicated that a specific region of the C-terminus (Arg543-Val583) is required for Kvβ binding. These results suggest that the C-terminal domain of Kv1.5 interacts with β-subunits and that this interaction is essential for the differential regulation of Kv currents by oxidized and reduced nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Kvβ:

β-Subunit of the voltage-gated potassium channel

Kv:

Voltage-gated potassium channel

Kv∆C:

Deletion of the last C-terminal amino acids of Kv channel

GST:

Glutathione-S-transferase fusion protein

V h act:

Voltage at which half of the channels are activated

V h inact:

Voltage at which half of the channels are inactivated

References

  1. Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40(4):553–624

    Article  PubMed  CAS  Google Scholar 

  2. Ceconi C, Bernocchi P, Boraso A, Cargnoni A, Pepi P, Curello S, Ferrari R (2000) New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage. Cardiovasc Res 47(3):586–594

    Article  PubMed  CAS  Google Scholar 

  3. Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK (2007) Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47):13468–13477

    Article  PubMed  CAS  Google Scholar 

  4. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36(Web Server issue):W197–W201

    Article  PubMed  CAS  Google Scholar 

  5. Deal KK, England SK, Tamkun MM (1996) Molecular physiology of cardiac potassium channels. Physiol Rev 76(1):49–67

    PubMed  CAS  Google Scholar 

  6. Dubois JM, Rouzaire-Dubois B (1993) Role of potassium channels in mitogenesis. Prog Biophys Mol Biol 59(1):1–21

    Article  PubMed  CAS  Google Scholar 

  7. Ekhterae D, Platoshyn O, Zhang S, Remillard CV, Yuan JX (2003) Apoptosis repressor with caspase domain inhibits cardiomyocyte apoptosis by reducing K+ currents. Am J Physiol Cell Physiol 284(6):C1405–C1410

    PubMed  CAS  Google Scholar 

  8. Eldstrom J, Doerksen KW, Steele DF, Fedida D (2002) N-terminal PDZ-binding domain in Kv1 potassium channels. FEBS Lett 531(3):529–537

    Article  PubMed  CAS  Google Scholar 

  9. Gulbis JM, Zhou M, Mann S, MacKinnon R (2000) Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science 289(5476):123–127

    Article  PubMed  CAS  Google Scholar 

  10. Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2):194–223

    Article  PubMed  CAS  Google Scholar 

  11. Klaidman LK, Leung AC, Adams JD Jr (1995) High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal Biochem 228(2):312–317

    Article  PubMed  CAS  Google Scholar 

  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  13. Lee TE, Philipson LH, Kuznetsov A, Nelson DJ (1994) Structural determinant for assembly of mammalian K+ channels. Biophys J 66(3 Pt 1):667–673

    Article  PubMed  CAS  Google Scholar 

  14. Leicher T, Bahring R, Isbrandt D, Pongs O (1998) Coexpression of the KCNA3B gene product with Kv1.5 leads to a novel A-type potassium channel. J Biol Chem 273(52):35095–35101

    Article  PubMed  CAS  Google Scholar 

  15. Li M, Jan YN, Jan LY (1992) Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257(5074):1225–1230

    Article  PubMed  CAS  Google Scholar 

  16. Liu SQ, Jin H, Zacarias A, Srivastava S, Bhatnagar A (2001) Binding of pyridine nucleotide coenzymes to the beta-subunit of the voltage-sensitive K+ channel. J Biol Chem 276(15):11812–11820

    Article  PubMed  CAS  Google Scholar 

  17. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903

    Article  PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  19. Magidovich E, Fleishman SJ, Yifrach O (2006) Intrinsically disordered C-terminal segments of voltage-activated potassium channels: a possible fishing rod-like mechanism for channel binding to scaffold proteins. Bioinformatics 22(13):1546–1550

    Article  PubMed  CAS  Google Scholar 

  20. Magidovich E, Orr I, Fass D, Abdu U, Yifrach O (2007) Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K+ channel modulates its interaction with scaffold proteins. Proc Natl Acad Sci U S A 104(32):13022–13027

    Article  PubMed  CAS  Google Scholar 

  21. McCormack T, McCormack K (1994) Shaker K+ channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell 79(7):1133–1135

    Article  PubMed  CAS  Google Scholar 

  22. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376

    Article  PubMed  Google Scholar 

  23. Nagaya N, Papazian DM (1997) Potassium channel alpha and beta subunits assemble in the endoplasmic reticulum. J Biol Chem 272(5):3022–3027

    Article  PubMed  CAS  Google Scholar 

  24. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470

    Article  PubMed  CAS  Google Scholar 

  25. Pan Y, Weng J, Cao Y, Bhosle RC, Zhou M (2008) Functional coupling between the Kv1.1 channel and aldoketoreductase Kvbeta1. J Biol Chem 283(13):8634–8642

    Article  PubMed  CAS  Google Scholar 

  26. Pongs O, Schwarz JR (2010) Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev 90(2):755–796

    Article  PubMed  CAS  Google Scholar 

  27. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48

    Article  PubMed  CAS  Google Scholar 

  28. Sewing S, Roeper J, Pongs O (1996) Kv beta 1 subunit binding specific for shaker-related potassium channel alpha subunits. Neuron 16(2):455–463

    Article  PubMed  CAS  Google Scholar 

  29. Shen NV, Chen X, Boyer MM, Pfaffinger PJ (1993) Deletion analysis of K+ channel assembly. Neuron 11(1):67–76

    Article  PubMed  CAS  Google Scholar 

  30. Sokolova O, Accardi A, Gutierrez D, Lau A, Rigney M, Grigorieff N (2003) Conformational changes in the C terminus of Shaker K+ channel bound to the rat Kvbeta2-subunit. Proc Natl Acad Sci U S A 100(22):12607–12612

    Article  PubMed  CAS  Google Scholar 

  31. Tipparaju SM, Barski OA, Srivastava S, Bhatnagar A (2008) Catalytic mechanism and substrate specificity of the beta-subunit of the voltage-gated potassium channel. Biochemistry 47(34):8840–8854. doi:10.1021/bi800301b

    Article  PubMed  CAS  Google Scholar 

  32. Tipparaju SM, Liu SQ, Barski OA, Bhatnagar A (2007) NADPH binding to beta-subunit regulates inactivation of voltage-gated K(+) channels. Biochem Biophys Res Commun 359(2):269–276

    Article  PubMed  CAS  Google Scholar 

  33. Tipparaju SM, Saxena N, Liu SQ, Kumar R, Bhatnagar A (2005) Differential regulation of voltage-gated K+ channels by oxidized and reduced pyridine nucleotide coenzymes. Am J Physiol Cell Physiol 288(2):C366–C376

    Article  PubMed  CAS  Google Scholar 

  34. Tristani-Firouzi M, Chen J, Mitcheson JS, Sanguinetti MC (2001) Molecular biology of K(+) channels and their role in cardiac arrhythmias. Am J Med 110(1):50–59

    Article  PubMed  CAS  Google Scholar 

  35. Uebele VN, England SK, Gallagher DJ, Snyders DJ, Bennett PB, Tamkun MM (1998) Distinct domains of the voltage-gated K+ channel Kv beta 1.3 beta-subunit affect voltage-dependent gating. Am J Physiol 274(6 Pt 1):C1485–C1495

    PubMed  CAS  Google Scholar 

  36. Uebele VN, Yeola SW, Snyders DJ, Tamkun MM (1994) Deletion of highly conserved C-terminal sequences in the Kv1 K+ channel sub-family does not prevent expression of currents with wild-type characteristics. FEBS Lett 340(1–2):104–108

    Article  PubMed  CAS  Google Scholar 

  37. VanDongen AM, Frech GC, Drewe JA, Joho RH, Brown AM (1990) Alteration and restoration of K+ channel function by deletions at the N- and C-termini. Neuron 5(4):433–443

    Article  PubMed  CAS  Google Scholar 

  38. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353(19):2042–2055

    Article  PubMed  CAS  Google Scholar 

  39. Weng J, Cao Y, Moss N, Zhou M (2006) Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J Biol Chem 281(22):15194–15200

    Article  PubMed  CAS  Google Scholar 

  40. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804(4):996–1010

    PubMed  CAS  Google Scholar 

  41. Yu W, Xu J, Li M (1996) NAB domain is essential for the subunit assembly of both alpha–alpha and alpha–beta complexes of shaker-like potassium channels. Neuron 16(2):441–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Maiying Kong for her advice on statistical analysis, and Joshua Salabei and Ermin Villa for their help in cloning experiments. This work was partly supported by NIH grants RR024489 HL-55477, HL-59378 (to A.B.), HL-089372 (to O.A.B.), 0865466D American Heart Beginning-grant-in-aid, HL-102171, Deans Research Funding USF-COP (to S.M.T), and the Program of the Russian Academy of Sciences for the “Molecular and Cellular Biology” (to V.N.U).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas M. Tipparaju.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39.0 kb)

ESM 2

(PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tipparaju, S.M., Li, XP., Kilfoil, P.J. et al. Interactions between the C-terminus of Kv1.5 and Kvβ regulate pyridine nucleotide-dependent changes in channel gating. Pflugers Arch - Eur J Physiol 463, 799–818 (2012). https://doi.org/10.1007/s00424-012-1093-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1093-z

Keywords

Navigation