Skip to main content
Log in

Calcium-dependent decrease in the single-channel conductance of TRPV1

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

TRPV1 is a Ca2+ permeable cation channel gated by multiple stimuli including noxious heat, capsaicin, protons, and extracellular cations. In this paper, we show that Ca2+ causes a concentration and voltage-dependent decrease in the capsaicin-gated TRPV1 single-channel conductance. This Ca2+-dependent effect on conductance was strongest at membrane potentials between −60 and +20 mV, but was diminished at more hyperpolarised potentials. Using simultaneous recordings of membrane current and fura-2 fluorescence to measure the fractional Ca2+ current of whole-cell currents evoked through wild-type and mutant TRPV1, we investigated a possible link between the mechanisms underlying Ca2+ permeation and the Ca2+-dependent effect on conductance. Surprisingly, we found no evidence of a structural correlation, and observed that the substitution of amino acids known to regulate Ca2+ permeability had little effect on the ability for Ca2+ to decrease TRPV1 conductance. However, we did observe that the Ca2+-dependent effect on conductance was not diminished by negative hyperpolarisation for a mutant receptor with severely impaired Ca2+ permeability, TRPV1-D646N/E648Q/E651Q. This would be consistent with the idea that Ca2+ reduces conductance by interacting with an intra-pore binding site, and that negative hyperpolarization reduces occupancy of this site by speeding the exit of Ca2+ into the cell. Taken together, our data show that in addition to directly and indirectly regulating channel gating, Ca2+ also directly reduces the conductance of TRPV1. Surprisingly, the mechanism underlying this Ca2+-dependent effect on conductance is largely independent of mechanisms governing Ca2+ permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278:30429–30434

    Article  PubMed  CAS  Google Scholar 

  2. Ahern GP, Brooks IM, Miyares RL, Wang XB (2005) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci 25:5109–5116

    Article  PubMed  CAS  Google Scholar 

  3. Ahern GP, Wang X, Miyares RL (2006) Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 281:8991–8995

    Article  PubMed  CAS  Google Scholar 

  4. Alam A, Shi N, Jiang Y (2007) Structural insight into Ca2+ specificity in tetrameric cation channels. Proc Natl Acad Sci USA 104:15334–15339

    Article  PubMed  CAS  Google Scholar 

  5. Almers W, McCleskey EW (1984) Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol 353:585–608

    PubMed  CAS  Google Scholar 

  6. Bezanilla F, Armstrong CM (1972) Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol 60:588–608

    Article  PubMed  CAS  Google Scholar 

  7. Cahalan M, Neher E (1992) Patch clamp techniques: an overview. Methods Enzymol 207:3–14

    Article  PubMed  CAS  Google Scholar 

  8. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  9. Chung M, Guler A, Caterina M (2007) Transient receptor potential vanilloid 1 exhibits agonist-evoked dynamic ion selectivity. Biophys J Suppl S: 531A–532A

  10. Chung MK, Guler AD, Caterina MJ (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11:555–564

    Article  PubMed  CAS  Google Scholar 

  11. Derebe MG, Zeng W, Li Y, Alam A, Jiang Y Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc Natl Acad Sci USA 108: 592–7

  12. Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24:3413–3420

    Article  PubMed  CAS  Google Scholar 

  13. Eisenman G, Horn R (1983) Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol 76:197–225

    Article  PubMed  CAS  Google Scholar 

  14. Evans RJ, Lewis C, Virginio C, Lundstrom K, Buell G, Surprenant A, North RA (1996) Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol 497(Pt 2):413–422

    PubMed  CAS  Google Scholar 

  15. Frings S, Seifert R, Godde M, Kaupp UB (1995) Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15:169–179

    Article  PubMed  CAS  Google Scholar 

  16. Garcia-Martinez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558

    Article  PubMed  CAS  Google Scholar 

  17. Gees M, Colsoul B, Nilius B The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2: a003962

  18. Green WN, Andersen OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359

    Article  PubMed  CAS  Google Scholar 

  19. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates

  20. Hille B, Woodhull AM, Shapiro BI (1975) Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci 270:301–318

    Article  PubMed  CAS  Google Scholar 

  21. Lewis CA (1979) Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol 286:417–445

    PubMed  CAS  Google Scholar 

  22. Liu B, Yao J, Wang Y, Li H, Qin F (2009) Proton inhibition of unitary currents of vanilloid receptors. J Gen Physiol 134:243–258

    Article  PubMed  CAS  Google Scholar 

  23. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  24. Luebbert M, Radtke D, Wodarski R, Damann N, Hatt H, Wetzel CH Direct activation of transient receptor potential V1 by nickel ions. Pflugers Arch 459: 737–50

  25. Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 105:7451–7455

    Article  PubMed  CAS  Google Scholar 

  26. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005

  27. Montell C The history of TRP channels, a commentary and reflection. Pflugers Arch 461: 499–506

  28. Nagy I, Rang HP (1999) Similarities and differences between the responses of rat sensory neurons to noxious heat and capsaicin. J Neurosci 19:10647–10655

    PubMed  CAS  Google Scholar 

  29. Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442

    Article  PubMed  CAS  Google Scholar 

  30. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection? J Physiol 567:35–44

    Article  PubMed  CAS  Google Scholar 

  31. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100:8002–8006

    Article  PubMed  CAS  Google Scholar 

  32. Premkumar LS, Agarwal S, Steffen D (2002) Single-channel properties of native and cloned rat vanilloid receptors. J Physiol 545:107–117

    Article  PubMed  CAS  Google Scholar 

  33. Premkumar LS, Auerbach A (1996) Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron 16:869–880

    Article  PubMed  CAS  Google Scholar 

  34. Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123:53–62

    Article  PubMed  CAS  Google Scholar 

  35. Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140:790–801

    Article  PubMed  CAS  Google Scholar 

  36. Samways DS, Khakh BS, Egan TM (2008) Tunable calcium current through TRPV1 receptor channels. J Biol Chem 283:31274–31278

    Article  PubMed  CAS  Google Scholar 

  37. Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159

    Article  PubMed  CAS  Google Scholar 

  38. Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444:208–212

    Article  PubMed  CAS  Google Scholar 

  39. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  PubMed  CAS  Google Scholar 

  40. Tousova K, Vyklicky L, Susankova K, Benedikt J, Vlachova V (2005) Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites. Mol Cell Neurosci 30:207–217

    Article  PubMed  CAS  Google Scholar 

  41. Watanabe J, Beck C, Kuner T, Premkumar LS, Wollmuth LP (2002) DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels. J Neurosci 22:10209–10216

    PubMed  CAS  Google Scholar 

  42. Welch JM, Simon SA, Reinhart PH (2000) The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci USA 97:13889–13894

    Article  PubMed  CAS  Google Scholar 

  43. Woodhull AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61:687–708

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Julius (UCSF) for supplying the rat TRPV1 cDNA and Kelsey Eckelkamp for assistance with molecular biology and tissue culture. This work was supported by a grant from the NIH to T.M.E. (2R01HL56236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien S. K. Samways.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 575 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samways, D.S.K., Egan, T.M. Calcium-dependent decrease in the single-channel conductance of TRPV1. Pflugers Arch - Eur J Physiol 462, 681–691 (2011). https://doi.org/10.1007/s00424-011-1013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1013-7

Keywords

Navigation